

Ядерные часы на основе тория-229. Ч. 2. Перспективы стандарта частоты
Abstract
About the Authors
L. Von Der WenseRussian Federation
B. Seiferle
Russian Federation
P. Thirolf
Russian Federation
References
1. Kroger L. A., Reich C. W. Features of the low energy level scheme of 229Th as observed in the α decay of 233U // Nucl. Phys. A. 1976. V. 259. P. 29-60.
2. Helmer R., Reich C. W. An excited state of 229Th at 3.5 eV // Phys. Rev. C. 1994. V. 49. P. 1845-1858.
3. Beck B. R., Becker J. A., Beiersdorfer P. e. a. Energy splitting of the ground-state doublet in the nucleus 229Th // Phys. Rev. Lett. 2007. V.109. P. 142501.
4. Beck B. R., Wu C.Y., Beiersdorfer P. e. a. Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh // Proc. 12th International Conference on Nuclear Reaction Mechanisms Varenna. Italy, 2009. LLNL-PROC-415170. [Электрон. версия] https://e-reports-ext.llnl.gov/pdf/375773.pdf (дата обращения: 16.11.2017).
5. Karpeshin F. F., Trzhaskovskaya M. B. Impact of the electron environment on the lifetime of the 229Thm low-lying isomer // Phys. Rev. C. 2007. V. 76. P. 054313.
6. L. von der Wense. On the direct detection of 229mTh: Ph.D. thesis, Ludwig-Maximilians-Universitat at Munchen, Germany (2016). [Электрон. версия] https://edoc.ub.unimuenchen.de/20492/7/ Wense Lars von der.pdf (дата обращения: 16.11.2017).
7. Vorykhalov O. V., Koltsov V.V. Search for an isomeric transition of energy below 5 eV in 229Th nucleus // Bull. Russ. Acad. Sci.: Physics. 1995. V. 59. P. 20-24.
8. Strizhov V. F., Tkalya E. V. Decay channel of low-lying isomer state of the 229Th nucleus. Possibilities of experimental investigation // Sov. Phys. JETP. 1991. V. 72. P. 387-390.
9. Tkalya E. V., Varlamov V. O., Lomonosov V. V., Nikulin S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ∙ 1.0 eV) resonant excitation by optical photons // Phys. Scripta. 1996. V. 53. P. 296-299.
10. Tkalya E. V., Zherikin A. N., Zhudov V. I. Decay of the low-energy nuclear isomer 229Thm(3/2+,3.5 ∙ 1.0 eV) in solids (dielectrics and metals): a new scheme of experimental research // Phys. Rev. C. 2000. V. 61. P. 064308.
11. Peik E., Tamm C. Nuclear laser spectroscopy of the 3.5 eV transition in 229Th // Europhys. Lett. 2003. V.1. P. 181-186.
12. Minkov N., Paly A. Reduced transition probabilities for the gamma decay of the 7:8 eV isomer in 229Th // Phys. Rev. Lett. 2017. V. 118. P. 212501.
13. Tkalya E. V., Schneider C., Jeet J., Hudson E. R. Radiative lifetime and energy of the low-energy isomeric level in 229Th // Phys. Rev. C 2015. V. 92. P. 054324.
14. Campbell C. J., Radnaev A. G., Kuzmich A., Dzuba V. A., Flambaum V. V., Derevianko A. Single-ion nuclear clock for metrology at the 19th decimal place // Phys. Rev. Lett. 2012. V.108. P. 120802.
15. Campbell C. J., Radnaev A. G., Kuzmich A. Wigner crystals of 229Th for optical excitation of the nuclear isomer // Phys. Rev. Lett. 2011. V.106. P. 223001.
16. Zimmermann K. Experiments towards optical nuclear spectroscopy with thorium-229: Ph.D. thesis, University of Hannover, Germany (2010).
17. Borisyuk P. V., Vasil'ev P. S., Derevyashkin O. P., t. a. Trapping, retention and laser cooling of Th3+ ions in a multisection linear quadrupole trap // Quantum Electronics. 2017. V. 47. P. 406-411.
18. Rellergert W. G., DeMille D., Greco R. R., Hehlen M. P., Torgerson J. R., Hudson E. R. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus // Phys. Rev. Lett. 2010. V.104. P. 200802.
19. Kazakov G. A., Litvinov A. N., Romanenko V. I., Yatsenko L. P., Romanenko A. V., Schreitl M., Winkler G. and Schumm T. Performance of a 229Thorium solid-state nuclear clock // New Jour. Phys. 2014. P. 083019.
20. von der Wense L., Seiferle B., Laatiaoui M., Neumayr J. B., Maier H.-J., Wirth H.-F., Mokry C., Runke J., Eberhardt K., Düllmann C. E., Trautmann N. G., Thirolf P. G. Direct detection of the 229Th nuclear clock transition // Nature. 2016. V. 533. P. 47-51.
21. B. Seiferle, L. von der Wense, P.G. Thirolf, Feasibility study of internal conversion electron spectroscopy of 229mTh // Eur. Phys. J. A. 2017. V. 53. P. 108-113.
22. Kazakov G. A., Schauer V., Schwestka J. e. a. Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter // Nucl. Instrum. Methods A. 2014. V. 735. P. 229-239.
23. Schneider P. Spektroskopische Messungen an Thorium-229 mit einem Detektor-Array aus metallischen magnetischen Kalorimetern, Master thesis, Ruprecht-Karls-Universitat Heidelberg, Germany (2016).
24. Ponce F. High accuracy measurement of the nuclear decay of U-235m and search for the nuclear decay of Th-229m: Ph.D. thesis, University of California, USA (2017).
25. Safronova M. Elusive tranition spotted in thorium // Nature. 2016. V. 533. P. 44-45.
26. Seiferle B., L. von der Wense, Thirolf P.G. Lifetime measurement of the 229Th nuclear isomer // Phys. Rev. Lett. 2017. V. 118. P. 042501.
27. Flambaum V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th // Phys. Rev. Lett. 2006. V. 97. P. 092502.
28. Cingoz A., Yost D.C., Allison T.K., Ruehl A., Fermann M.E., Hartl I., Ye J. e. a. Direct frequency comb spectroscopy in the extreme ultraviolet // Nature. 2012. V. 482. P. 68-71.
29. Cavaletto S. M., Harman Z., Ott C., Buth C., Thomas Pfeifer T., Christoph H. Keitel C. H. e. a. Broadband high-resolution x-ray frequency combs // Nature Photonics. 2014. V. 8. P. 520-523.
30. NNDC interactive chart of nuclides. [Офиц. cайт] https://www.nndc.bnl.gov/chart (дата обращения: 16.11.2017).
Review
For citations:
, , . Izmeritel`naya Tekhnika. 2017;(12):17-22. (In Russ.)