

Ядерные часы на основе тория-229. Ч. 1. История измерения времени
Аннотация
Об авторах
L. . Von Der WenseРоссия
B. . Seiferle
Россия
P. G. Thirolf
Россия
Список литературы
1. Higgins K., Miner D., Smith C.N., Sullivan D.B. A walk through time (version 1.2.1). [Электрон. версия] http://physics.nist.gov/time (дата обращения: 12.07.2010).
2. Bennet M., Schatz M.F., Rockwood H., Wiesenfeld K. Huygens' clocks // Proceedings of the Royal Society of Lodon A. 2002. V. 458. P. 563-579.
3. Sorge F., Cammalleri M., Genchi G. On the birth and growth of pendulum clocks in the early modern era // Essays on the history of mechanical engineering. 2016. P. 273-290.
4. Gould R. T. The marine chronometer: its history and development, J.D. Potter (1923).
5. Bosschieter J. E. Shortt's free pendulum, A History of the Evolution of Electric Clocks. [Электрон. версия] http://www.electric-clocks.eu/clocks/en/page10.htm (дата обращения: 03.09.2017).
6. Marrison W. A. The evolution of the quartz crystal clock // The Bell System Technical Journal. 1948. V. 27. P. 510-588.
7. Lyons H. The atomic clock // Instruments. 1949. V. 22. P. 133-135 (1949).
8. Forman P. Atomichron: The atomic clock from concept to commercial product // IEEE Ultrasonics, Ferroelectrics and Frequency Control Society. 1985. P. 1181-1204
9. Essen L., Parry J.V.L. An atomic standard of frequency and time interval: A caesium resonator // Nature. 1955. V. 176. P. 280-282.
10. Ramsey N. F. History of Atomic clocks // Journal of Research of the National Bureau of Standards. 1983. V. 88. P. 301-318.
11. Wynands R., Weyers S. Atomic fountain clocks // Metrologia. 2005. V. 42. P. 64-79.
12. Udem Th., Holzwarth R., T. W. Hansch. Optical frequency metrology // Nature. 2002. V. 416. P. 233-237.
13. Diddams S. A., Udem T., Vogel K. R., Oates C.W., Curtis E.A., Lee W.D., Itano W.M., Drullinger R.E., Bergquist J.C., Hollberg L.W. An optical clock based on a single trapped 199Hg+ ion // Science. 2001. V. 293. P. 825-828.
14. Rosenband T., Hume D., Schmidt Р. е. а. Frequency Ratio of Al+ and Hg+ Single-ion optical clocks; Metrology at the 17th decimal place // Science. 2008. V. 319. P. 1808-1811.
15. Huntemann N., Sanner С., Lipphardt В. Single-ion atomic clock with 3∙10-18 systematic uncertainty // Phys. Rev. Lett. 2016. V. 116. P. 063001.
16. Bloom B. J., Nicholson T.L., Williams J.R., Campbell S.L., Bishof M., Zhang X., Zhang W., Bromley S.L., Ye J. An optical lattice clock with accuracy and stability at the 10-18 level // Nature. 2014. V. 506. P. 71-75.
17. Nicholson T.L., Campbell S.L., Hutson R.B., Systematic evaluation of an atomic clock at 2∙10-18 total uncertainty // Nature Communications. 2015. V. 6. P. 6896.
18. Ludlow A. D., Boyd M. M., Ye J., Peik E., Schmidt P. Optical Atomic clocks // Rev. Mod. Phys. 2015. V. 87. P. 637-699.
19. Peik E., Okhapkin M. Nuclear clocks based on resonant excitation of γ-transitions // Comptes Rendus Physique. 2015. V. 16. P. 516-523.
Рецензия
Для цитирования:
Von Der Wense L., Seiferle B., Thirolf P.G. Ядерные часы на основе тория-229. Ч. 1. История измерения времени. Izmeritelʹnaya Tekhnika. 2017;(12):13-16.