

Применение метода импульсной лазерной абляции для получения контрастных жидкостей на основе наночастиц оксида диспрозия Dy2O3
Аннотация
Об авторах
М. БаршутинаРоссия
А. . Барчански
Россия
Список литературы
1. Panebianco V., Giove F., Barchetti F., Podo F., Passariello R. High-field PET/MRI and MRS: potential clinical and research applications // Clinical and Translational Imaging. 2013. V. 1. No. 1. P. 17-29.
2. Duyn J. H. The future of ultra-high field MRI and fMRI for study of the human brain // Neuroimage. 2012. V. 62. No. 2. P. 1241-1248.
3. Hagberg G. E., Scheffler K. Effect of r1 and r2 relaxivity of gadolinium-based contrast agents on the T1 -weighted MR signal at increasing magnetic field strengths // Contrast Media & Molecular Imaging. 2013. V. 8. No. 6. P. 456-465.
4. Storey P., Lim R. P., Chandarana H., Rosenkrantz A. B., Kim D., Stoffel D. R., Lee V. S. MRI assessment of hepatic iron clearance rates after USPIO administration in healthy adults // Invest Radiol. 2012. V. 47. No. 12. P. 717-724.
5. Kattel K., Park J. Y., Xu W., Kim H. G., Lee E. J., Bony B. A., Heo W. C., Jin S., Baeck J. S., Chang Y., Kim T. J., Bae J. E., Chae K. S., Lee G. H. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents // Biomaterials. 2012. V. 33/ Iss. 11. P. 3254-3261.
6. Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications // Chem Rev. 2008. V. 108. No. 6. P. 2064-2110.
7. Norek M. Peters J. MRI contrast agents based on dysprosium or holmium // Progress in Nuclear Magnetic Resonance Spectroscopy. 2011. V. 59, Iss.1. P. 64-82.
8. Vuong Q., Doorslaer S., Bridot J-L., Argante C., Alejandro G., Hermann R., Disch S., Mattea C., Stapf S. Paramagnetic nanoparticles as potential MRI contrast agents: characterization, NMR relaxation, simulations and theory // Magnetic Resonance Materials in Phys., Biology and Medicine. 2012. V. 25. No. 6. P. 467-478.
9. Song X. C., Zheng Y. F., Wang Y. Selected-control synthesis of dysprosium hydroxide and oxide nanorods by adjusting hydrothermal temperature // Mater. Res. Bull. 2008. V. 43. P. 1106-1111.
10. Happy Tok A. I. Y., Boey F. Y. C., Huebner R., Ng S. H. Synthesis of dysprosium oxide by homogeneous precipitation // J. Electroceramics. 2006. V. 17. P. 75-78.
11. Happy Tok A. I.Y., Su L. T., Boey F. Y. C., Ng S. H. Homogeneous precipitation of Dy2O3 nanoparticles-effects of synthesis parameters // J. Nanosci. Nanotechnol. 2007. No. 7. P. 907-915.
12. Barcikowski S., Hahn A., Kabashin A. V., Chichkov B. N. Properties of nanoparticles generated during femtosecond laser machining in air and water // Appl. Phys. A. 2007. V. 87. No. 1. P. 47-55.
13. Laser ablation: effects and applications / Ed. by Sharon E. Black. Hauppauge: Nova Science Publishers, 2011.
14. Amendola V., Meneghettia M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? // Phys. Chem. Chem. Phys. 2013. No.15. P. 3027-3046.
15. Rohrer M., Bauer H., Mintorovitch J., Requardt M., Weinmann H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths // Invest Radiol. 2005. V. 40. No. 11. P. 715-724.
16. Szpak A., Fiejdasz S., Prendota W., Straczek T., Kapusta C., Szmyd J., Nowakowska M., Zapotoczny S. T1-T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes // J. Nanoparticle Res. 2014. V. 16. No. 11. P. 2678.
Рецензия
Для цитирования:
, Барчански А. Применение метода импульсной лазерной абляции для получения контрастных жидкостей на основе наночастиц оксида диспрозия Dy2O3. Izmeritelʹnaya Tekhnika. 2017;(3):12-14.