Uncertainty in a broad sense based on the conversion formula
https://doi.org/10.32446/0368-1025it.2025-6-102-109
Abstract
A brief overview of the transformation of the term “uncertainty of the measurement result” in Russian metrology over the past three decades is given, leading to the statement: “The probability distribution fully describes the probabilistic properties of the uncertainty of the result”. It is shown that the concept of error and true value is based on unknown quantities, while the concept of uncertainty operates with unknown probability distributions. It is proposed to understand the error of the measurement object model as a generally uncertain value that characterizes the distribution of possible deviations from the systematic component of the model, taking into account the unobservable components of parametric and nonparametric inadequacy. The mathematical basis for this representation of accuracy in solving measurement problems is the conversion formula, which is a convolution of the probability distributions of the corresponding components of inadequacy.
About the Author
S. F. LevinRussian Federation
Sergey F. Levin
Moscow,
References
1. Kuznetsov V. A., Yal unina G. V. Metrology: A textbook. Izdatel’stvo standartov, Moscow (1998). (In Russ.)
2. Rukovodstvo po vyrazheniyu neopredelyonnosti izmereniya. Translated from English VNIIM, ed. prof. V. A. Slaev. VNIIM, St. Petersburg (1999). (In Russ.)
3. Guide to the Expression of Uncertainty in Measurement (GUM). Sec. ed. BIMP, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, Geneva (1995).
4. Evaluation of the quality characteristics of complex systems and system analysis. Collection of articles. AN SSSR, Nauchnyj so vet po kompleksnoj probleme “Kibernetika”, Moscow (1980). (In Russ.)
5. Barzilovich E. Yu. Models of maintenance of complex systems. Vysshaya shkola, Moscow (1982). (In Russ.)
6. Statistical methods in the theory of maintenance. Levin S. F. (Ed.). In Voprosy kibernetiki, VK-94. AN SSSR, Nauchnyj sovet po kompleksnoj probleme “Kibernetika”, Moscow (1980). (In Russ.)
7. Levin S. F. Uncertainty in wide and narrow meanings and results of measuring problems solution. International Seminar “Mathematics, statistics and computation to support measurement quality”, St. Petersburg, 28–30 June 2006. VNIIM, COOMET, St. Petersburg, рp. 49, 51 (2006). (In Russ.)
8. Levin S. F. Uncertainty of the results of solving measurement problems in a broad and narrow sense. Metrologiya, (9), 3–24 (2006). (In Russ.) https://elibrary.ru/mvqhmb
9. Levin S. F. Indeterminateness of the results of calibrating measuring instruments in the narrow and the broad sense. Izmeritel’naya Tekhnika, (9), 15–19 (2007). (In Russ.) https://elibrary.ru/mvafzb
10. International Vocabulary of Metrology – Basic and General Concepts and Associated Terms. VIM, 3rd ed. (2007).
11. International Dictionary of Metrology: basic and general concepts and related terms. Translated from English and French by D. I. Mendeleev VNIIM, BelGIM. Ed. 2nd. NGO “Professional”, St. Petersburg (2010). (In Russ.)
12. Levin S. F. Statistical analysis of maintenance systems for technical facilities. In Voprosy kibernetiki, VK-94. AN SSSR, Nauchnyj sovet po kompleksnoj probleme “Kibernetika”, Moscow, рp. 105–122 (1982). (In Russ.)
13. Levin S. F. Unresolved issues of uncertainty. Chief Metrologist, (4), 13–24 (2009). (In Russ.)
14. Levin S. F. Guide to expressing measurement uncertainty: is revision a paradigm shift or a new sanction? Legislative and applied metrology, (5), 31–44 (2016). (In Russ.) https://elibrary.ru/wwoxwb
15. Levin S. F. Guide to the expression of uncertainty in measurement: problems, unrealized capabilities, and revisions. Part 1. Terminological problems. Izmeritel’naya Tekhn ika, (2), 3–8 (2018). (In Russ.) https://elibrary.ru/vztsnn
16. Levin S. F. Guide to the expression of uncertainty in measurement: problems, unrealized capabilities, and revisions. Part 2. Probabilistic-statistical problems. Izmeritel’naya Tekhn ika, (4), 7–12 (2018). (In Russ.) https://elibrary.ru/xmgqsl
17. Levin S. F., Levin S. S. Contour evaluation of truncated distributions in measurement. Izmeritel’naya Tekhnika, (1), 10–13 (2008). (In Russ.) https://elibrary.ru/mvjwuz
18. Levin S. F. Error: a number, parameter, or probability distribution. Izmeritel’naya Tekhnika, 73(7), 14–22 (2024). (In Russ.) https://doi.org/10.32446/0368-1025it.2024-7-14-22 ; https://elibrary.ru/qfzorn
19. Lukacs E. Characteristic functions, Hafner Pub. Co. (1970). 20. Lévy P. Calcul des probabilités. Gauthier-Villars, Paris (1925). (In French)
20. Levin S. F. The Identifi cation of probability distributions. Izmeritel’naya Tekhnika, (2), 3–9 (2005). (In Russ.) https://elibrary.ru/pdxrzv
21. Kuznetsov V. A., Yalunina G. V. Metrology: theoretical, applied and legislative foundations. A textbook. Izdatel’stvo standartov, Moscow (1998). (In Russ.)
22. Smirnov N. V., Dunin-Barkovskij I. V. A course in probability theory and mathematical statistics for technical applications. Nauka, Moscow (1969). (In Russ.)
23. Ehrlich Ch., Dybkaer R., Wöger W. Evolution of philosophy and description of measurement (preliminary rationale for VIM3). Accreditation and Quality Assurance, 12, 201–218 (2007). https://doi.org/10.1007/s00769-007-0259-4 ; https://elibrary.ru/uejhni
24. Erlih Ch., Dibker R., Vyoger V. The evolution of philosophy and the interpretation of the concept of “measurement”. Chief Metrologist, (1), 11–30 (2016). (In Russ.).
Review
For citations:
Levin S.F. Uncertainty in a broad sense based on the conversion formula. Izmeritel`naya Tekhnika. 2025;74(6):102-109. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-6-102-109
JATS XML




















