Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Application of rational functions in primary and secondary thermometry

https://doi.org/10.32446/0368-1025it.2024-12-22-29

Abstract

Method has been developed for determination of acoustic and microwave resonance frequences in acoustic gas thermometry by fitting of frequency dependencies of acoustic signal and complex transmission coefficient of the resonator by microwave radiation. The method does not require setting of initial parameters. The method is based on the representation of fitting function used for approximation of frequency dependence in acoustic gas thermometry by rational function. Then approximation of experimental frequency dependence by rational function is performed by quickly converged series of linear approximations. This series can be easily implemented on PC. Method eliminates setting of initial parameters. This simplifies and accelerates approximation of frequency dependences and determination of resonant frequences. Approximation of temperature dependencies of resistivity of standard rhodium-iron resistance thermometers was performed by rational function in the temperature range from 0.5 to 273 K as an alternative for traditional approximation by two different polynomial functions in temperature subranges from 0.5 to 26 K and from 26 to 273 K. It has been shown that the approximation of the temperature dependence of resistivity of rhodium-iron thermometer by single rational function provides deviation of fitting function from experimental points less than 0.5 mK in the range from 0.5 to 273 K. Amount of parameters of such rational function is less than amount of parameters of two polynomial functions providing comparable deviation at experimental points. Obtained result significantly simplifiers resistance to temperature transfer for rhodium-iron standard thermometers.

About the Authors

V. G. Kytin
Russian Metrological Institute of Technical Physics and Radio Engineering; M. V. Lomonosov Moscow State University
Russian Federation

Vladimir G. Kytin

Mendeleevo, Moscow region,

Moscow



B. G. Potapov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Boris G. Potapov

Mendeleevo, Moscow region



A. A. Petukhov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Alexey A. Petukhov

Mendeleevo, Moscow region



E. G. Aslanyan
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Eduard G. Aslanyan

Mendeleevo, Moscow region



A. N. Shchipunov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Andrey N. Shchipunov

Mendeleevo, Moscow region



References

1. Kalitkin N. N. Numerical methods. Ed. A. A. Samarskyi. Nauka, Moscow (1978).

2. Moldover M. R., Gavioso R. M., Mehl J. B. et al. Acoustic gas thermometry. Metrologia, 51(1), R1–R19 (2014). https://doi.org/10.1088/0026-1394/51/1/R1

3. Gavioso R. M., Ripa D. M., Steur P. P.M, Dematteis R., Imbraguglio D. Determination of the thermodynamic temperature between 236 K and 430 K from speed of sound measurements in helium. Metrologia, 56(4), 045006 (2019). https://doi.org/10.1088/1681-7575/ab29a2

4. Pitre L., Moldover M. R., Weston Tew Acoustic thermometry: New results from 273 K to 77 K and progress towards 4 K. Metrologia, 43(1), 142–162 (2006). https://doi.org/10.1088/0026-1394/43/1/020

5. Benedetto G., Gavioso R. M., Spagnolo R., Marcarino P., Merlone A. Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K. Metrologia, 41(1), 74–98 (2004). https://doi.org/10.1088/0026-1394/41/1/011

6. Ripple D. C., Strouse G. F., Moldover M. R. Acoustic thermometry results from 271 K to 552 K. International Journal of Thermophysics, 28, 1789–1799 (2007). https://doi.org/10.1007/s10765-007-0255-2

7. Kytin V. G., Kytin G. A., Ghavalyan M. Yu., Potapov B. G., Aslanyan E. G., Schipunov A. N. Deviation of temperature determined by ITS-90 temperature scale from Thermodynamic temperature measured by acoustic gas thermometry at 79.0000 K and at 83.8058 K. International Journal of Thermophysics, 41, 88 (2020). https://doi.org/10.1007/s10765-020-02663-2

8. Osadchy S.M., Potapov B.G., Pilipenko K.D. Acoustic gas thermometer for implementation of the new defi nition of Kelvin on the basis of fundamental physical constant of Boltzmann. Al’manac of modern metrology, (12), 15–42 (2017). (In Russ.)

9. Kytin G. A., Kytin V. G., Gavalyan M. Yu., Aslanyan E. G., Shchipunov A. N. Installation for measurement of thermodynamic temperature by method of relative acoustic gas thermometry in the range of (4.2–273.16) K. Al’manac of modern metrology, (12), 43–64 (2017). (In Russ.)

10. Gao B., Pitre L., Luo E. C., Plimmer M. D., Lin P., Zhang J. T., Feng X. J., Chen Y. Y., Sparasci F. Feasibility of primary thermometry using refractive index measurements at a single pressure. Measurement, 103, 258–262 (2017). https://doi.org/10.1016/j.measurement.2017.02.039

11. Rourke P. M. C. NRC microwave refractive index gas thermometry implementation between 24.5 K and 84 K. International Journal of Thermophysics, 38, 107 (2017). https://doi.org/10.1007/s10765-017-2239-1

12. May E. F., Pitre L., Mehl J. B., Moldover M. R., Schmidt J. W. Quasi-spherical cavity resonators for metrology based on the relative dielectric permittivity of gases. Review of Scientifi c Instruments, 75(10), 3307–3317 (2004). https://doi.org/10.1063/1.1791831

13. Underwood R., Flack D., Morantz P., Sutton G., Shore P., de Podesta M. Dimensional characterization of a quasispherical resonator by microwave and coordinate measurement techniques. Metrologia, 48(1), 1–15 (2011). https://doi.org/10.1088/0026-1394/48/1/001

14. Kowal A., Manuszkiewicz H., Kołodziej B., Szmyrka-Grzebyk A., Peng Lin,·Bo Gao, Lihong Yu. Tests of the stability of Chinese RhFe resistance thermometers at low temperatures. International Journal of Thermophysics, 38, 95 (2017). https://doi.org/10.1007/s10765-017-2232-8

15. Lipinski L., Szmyrka-Grzebyk A., Peng Lin, XingWei Li, Manuszkiewicz H., Jancewicz D., Grykalowska A., Steur P. P. M., Pavese F. Development of precision Rh – 0.5 at % Fe thermometers of chinese production: further tests. International Journal of Thermophysics, 31, 1696–1702 (2010). https://doi.org/10.1007/s10765-010-0829-2

16. Rusby R., Head D., Meyer C., Tew W., Tamura O., Hill K. D., de Groot M., Storm A., Peruzzi A., Fellmuth B., Engert J., Astrov D., Dedikov Yu., Kytin G. Final Report on CCT-K1: Realizations of the ITS-90, 0.65 K to 24.5561 K, using rhodium-iron resistance thermometers. Metrologia, 43(1A), 03002 (2006). https://doi.org/10.1088/0026-1394/43/1A/03002

17. Kytin V. G., Ghavalyan M. Y., Petukhov A. A. et al. Realization of a new defi nition of Kelvin on State primary standard of temperature unit GET 35-2021 in the temperature range from 0.3 to 273.16 K. Measurement Techniques, 64(8), 613–621 (2021). https://doi.org/10.1007/s11018-021-01980-8

18. Larkin A. I., Mel’nikov V. I. Magnetic impurities in an almost magnetic metal. Soviet physics JETP, 34(3), 656–661 (1972).

19. Laborde O., Radhakrishna P. Electrical resistivity of a rhodium – 0.5 % iron alloy. Physics Letters, 37A(3), 209–210 (1971). https://doi.org/10.1016/0375-9601(71)90465-8


Supplementary files

Review

For citations:


Kytin V.G., Potapov B.G., Petukhov A.A., Aslanyan E.G., Shchipunov A.N. Application of rational functions in primary and secondary thermometry. Izmeritel`naya Tekhnika. 2024;73(12):22-29. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-12-22-29

Views: 98


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)