Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optimization of the sensitivity of the magnetoimpedance sensor of small magnetic fields by methods of sequential approximation and swarm of particles

https://doi.org/10.32446/0368-1025it.2023-11-38-44

Abstract

The use of multiparametric optimization of an unknown discrete function in the development of applied solutions for physical systems is considered. Such optimization is practically implemented in real time using modern data transfer protocols at high speed and continuously increasing computing power. To optimize the sensitivity of a modern magnetic sensor based on high-frequency magnetoimpedance in ferromagnetic microconducts, an iterative method of global maximum search, the particle swarm algorithm, has been applied. The output signal of the sensor depends non-linearly on both the internal magnetic properties of the microcircuit and the excitation mode, which requires a certain calibration to establish optimal excitation parameters. The sensor output signals for various excitation parameters and external magnetic fields were measured using an automated installation. The results of the search for the global maximum by the sequential approximation method and the particle swarm method presented in the paper demonstrate the effectiveness of the search algorithm used, the particle swarm algorithm turned out to be the most effective, since it found the global maximum more accurately. With different excitation parameters, the algorithm has always determined the maximum sensitivity when varying the three main parameters of the excitation signal: frequency, amplitude and constant component. The results obtained can be applied in the development of highly sensitive intelligent magnetic sensors and systems based on them.

About the Authors

N. A. Yudanov
National University of Science and Technology (NUST MISIS)
Russian Federation

Nikolay A. Yudanov

Moscow



M. A. Nemirovich
National University of Science and Technology (NUST MISIS)
Russian Federation

Mark A. Nemirovich

Moscow



M. A. Andreiko
National University of Science and Technology (NUST MISIS)
Russian Federation

Maxim A. Andreiko

Moscow



D. P. Makhnovsky
Sensing Materials Technology Ltd
United Kingdom

Dmitriy P. Makhnovsky

Plymouth



V. V. Rodionova
Research and Educational Center “Smart Materials and Biomedical Applications”, Immanuel Kant Baltic Federal University
Russian Federation

Valeria V. Rodionova

Kaliningrad



L. V. Panina
National University of Science and Technology (NUST MISIS); Research and Educational Center “Smart Materials and Biomedical Applications”, Immanuel Kant Baltic Federal University
Russian Federation

Larissa V. Panina

Moscow

Kaliningrad



References

1. Xie G., Sunden B., Wang Q., Applied Thermal Engineering, 2008, vol. 28, no. 8-9, pp. 895–906. https://doi.org/10.1016/j.applthermaleng.2007.07.008

2. Abdulwhab A. et al., Electric Power Components and Systems, 2004, vol. 32, no. 12, pp. 1239–1254. https://doi.org/10.1080/15325000490446601

3. Jahangirian A., Shahrokhi A., Computers & Fluids, 2011, vol. 46, no. 1, pp. 270–276. https://doi.org/10.1016/j.compfluid.2011.02.010

4. Diab A. A. Z. et al., Energy Reports, 2022, vol. 8, no. 10, pp. 384–393. https://doi.org/10.1016/j.egyr.2022.05.168

5. Kennedy J., Eberhart R. C., Shi Y., Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, Calif, USA, 2001, pp. 287–368.

6. Poli R., Journal of Artifi cial Evolution and Applications, 2008, vol. 10, pp. 1–10. https://doi.org/10.1155/2008/685175

7. Gerginov V., Pomponio M., Knappe S., IEEE Sensors Journal, 2020, vol. 20, no. 21, pp. 12684–12690. https://doi.org/10.1109/jsen.2020.300219

8. Zhang R., Mhaskar R., Smith K., Prouty M., Applied Physics Letters, 2020, vol. 116, no. 14, pp. 1–5. https://doi.org/10.1063/5.0004746

9. Han C. et al., Virtual Reality & Intelligent Hardware, 2022, vol. 4, no. 1, pp. 38–54. https://doi.org/10.1016/j.vrih.2022.01.003

10. Tehranchi M. M., Ranjbaran M., Eftekhari H., Sensors and Actuators A: Physical, 2011, vol. 170, no. 1–2, pp. 55–61. https://doi.org/10.1016/j.sna.2011.05.031

11. Zhang D. et al., Sensors and Actuators A: Physical, 2016, vol. 249, no. 1, pp. 225–230. https://doi.org/10.1016/j.sna.2016.09.005

12. Tsuyoshi U., Jiaju M., Journal of Magnetism and Magnetic Materials, 2020, vol. 514, no. 15, pp. 1–7. https://doi.org/10.1016/j.jmmm.2020.167148

13. Makhnovskiy D., Panina L., Mapps D. J., Physical Review B, 2002, vol. 63, pp. 1–17. https://doi.org/10.1103/PhysRevB.63.144424

14. Ipatov M., Zhukova V., Zhukov A., et al., Applied Physics Letters. AIP Publishing, 2010, vol. 97, no. 25, pp. 1–4. https://doi.org/10.1063/1.3529946

15. Zhukov A. et al., Journal of Alloys and Compounds, 2019, vol. 814, pp. 1–17. https://doi.org/10.1016/j.jallcom.2019.152225

16. Gudoshnikov S. et al., Physica Status Solidi A, 2014, vol. 211, no. 5, pp. 980–985. https://doi.org/10.1002/pssa.201300717

17. Panina L. V., et al., Physica Status Solidi A, 2015, vol. 213, no. 2, pp. 341-349. https://doi.org/10.1002/pssa.201532578


Review

For citations:


Yudanov N.A., Nemirovich M.A., Andreiko M.A., Makhnovsky D.P., Rodionova V.V., Panina L.V. Optimization of the sensitivity of the magnetoimpedance sensor of small magnetic fields by methods of sequential approximation and swarm of particles. Izmeritel`naya Tekhnika. 2023;(11):38-44. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-11-38-44

Views: 241


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)