

Diffractive optical elements generation by layer-based methods for rapid and high-quality formation of 3D-objects
https://doi.org/10.32446/0368-1025it.2023-11-45-51
Abstract
The article is devoted to the generation of diffractive optical elements and computer holograms for forming three-dimensional images. Possibilities of increasing the speed of diffractive optical elements generation and the quality of reconstructed 3D-objects were investigated. Four methods of optical elements generation were analyzed. The methods use division the 3D-objects into fl at layers. The quality of 3D-object reconstruction and time generation by the methods were assessed. 3D-object reconstruction from generated optical elements was modeled. Optical formation of objects was performed by displaying optical elements onto liquid crystal spatial light modulator. It was found that the best quality of reconstruction was provided by iterative parallel ping-pong and non-convex optimization methods. The optimal ratio of reconstruction quality to generation speed ratio was obtained for the parallel ping-pong method. The possibility of fast formation high-quality three-dimensional scenes consisting of dozens of layers has been demonstrated.
Keywords
About the Authors
E. Yu. ZlokazovRussian Federation
Evgenii Yu. Zlokazov
Moscow
E. D. Minaeva
Russian Federation
Ekaterina D. Minaeva
Moscow
V. G. Rodin
Russian Federation
Vladislav G. Rodin
Moscow
R. S. Starikov
Russian Federation
Rostislav S. Starikov
Moscow
P. A. Cheremkhin
Russian Federation
Pavel A. Cheremkhin
Moscow
A. V. Shifrina
Russian Federation
Anna V. Shifrina
Moscow
References
1. Difraktsionnaya komp’yuternaya optika (Diffractive computer optics), ed. by V. A. Soifer, Moscow, Fizmatlit Publ., 2007, 736 p. (In Russ.)
2. Doskolovich L. L., Mingazov A. A., Byzov E. V., Bykov D. A., Bezus E. A., Computer Optics, 2022, vol. 46, no. 2, pp. 173–183 (In Russ.) https://doi.org/10.18287/2412-6179-CO-1029
3. Schmidt S., Thiele S., Toulouse A., Bösel C., Tiess T., Herkommer A., Gross H., Giessen H., Optica, 2020, vol. 7, no. 10, pp. 1279–1286. https://doi.org/10.1364/OPTICA.395177
4. Khorin P. A., Khonina S. N., Journal of Optical Technology, 2023, vol. 90, no. 5, pp. 236–241. https://doi.org/10.1364/JOT.90.000236
5. Pi D., Liu J., Wang Y., Light: Science & Applications, 2022, vol. 11, 231. https://doi.org/10.1038/s41377-022-00916-3
6. Shi K., Yoshimoto N., Zhang G., Optics Express, 2023, vol. 31, no. 21, pp. 34817–34826. https://doi.org/10.1364/OE.501898
7. Di Leonardo R., Ianni F., Ruocco G., Optics Express, 2007, vol. 15, no. 4, pp. 1913–1922. https://doi.org/10.1364/OE.15.001913
8. Yang S., Papagiakoumou E., Guillon M., de Sars V., Tang Ch.-M., Emiliani V., Journal of Neural Engineering, 2011, vol. 8, 046002. https://doi.org/10.1088/1741-2560/8/4/046002
9. Faini G., Tanese D., Molinier C. et al, Nature Communications, 2023, vol. 8, 1888. https://doi.org/10.1038/s41467-023-37416-w
10. Lesem L. B., Hirsch P. M., Jordan J. A., IBM Journal of Research and Development, 1969, vol. 13, no. 2, pp. 150–155. https://doi.org/10.1147/rd.132.0150
11. Kompanets I. N., Andreev A. L., Quantum Electronics, 2017, vol. 47, no. 4, pp. 294–302. https://doi.org/10.1070/QEL16293
12. Evtikhiev N. N., Krasnov V. V., Ryabcev I. P., Rodin V. G., Starikov R. S., Cheremkhin P. A., Measurement Techniques, 2021, vol. 64, no. 5, pp. 346–351. https://doi.org/10.1007/s11018-021-01940-2
13. Yin K., Hsiang E.-L., Zou J., Li Y., Yang Z., Yang Q., Lai P.-C., Lin C.-L., Wu S.-T., Light: Science & Applications, 2022, vol. 11, 161. https://doi.org/10.1038/s41377-022-00851-3
14. Rymov D. A., Shifrina A. V., Cheremkhin P. A., Rodin V. G., Krasnov V. V., Measurement Techniques, 2023, vol. 66, no. 6, pp. 392–397. https://doi.org/10.1007/s11018-023-02239-0
15. Correa-Rojas N. A., Gallego-Ruiz R. D., Álvarez-Castaño M. I., Computer Optics, 2022, vol. 46, no. 1, pp. 30–38. https://doi.org/10.18287/2412-6179-CO-857
16. Park J.-H., Journal of Information Display, 2016, vol. 18, no. 1, pp. 1–12. https://doi.org/10.1080/15980316.2016.1255672
17. Wakunami K., Yamaguchi M., Optics Express, 2011, vol. 19, no. 10, pp. 9086–9101. https://doi.org/10.1364/OE.19.009086
18. Ichigawa T., Yoneyama T., Sakamoto Y., Optics Express, 2013, vol. 21, no. 26, pp. 32019–32031. https://doi.org/10.1364/OE.21.032019
19. Zhang Y., Fan H., Wang F., Gu X., Qian X., Poon T.-C., Applied Optics, 2022, vol. 61, no. 5, pp. B363–B374. https://doi.org/10.1364/AO.444973
20. Zhang J., Pegard N., Zhong J., Adesnik H., Waller L., Optica, 2017, vol. 4, no. 10, pp. 1306–1313. https://doi.org/10.1364/OPTICA.4.001306
21. Clark T. W., Offer R. F., Franke-Arnold S., Arnold A. S., Radwell N., Optics Express, 2016, vol. 24, no. 6, pp. 6249–6264. https://doi.org/10.1364/OE.24.006249
22. Piestun R., Spektor B., Shamir J., Journal of the Optical Society of America A, 1996, vol. 13, no. 9, pp. 1837–1848. https://doi.org/10.1364/JOSAA.13.001837
23. Xiao-yu J. A., Chuang P., Xi W., Yantao Z., Proceedings of SPIE, 2012, vol. 8556, 85561H. https://doi.org/10.1117/12.981934
24. Makowski M., Sypek M., Kolodziejczyk A. Mikula G., Suszek J., Optical Engineering, 2007, vol. 46, no. 4, 045802. https://doi.org/10.1117/1.2727379
25. Dorsch R. G., Lohmann A. W., Sinzinger S., Applied Optics, 1994, vol. 33, no. 5, pp. 869–875. https://doi.org/10.1364/AO.33.000869
26. Ying C., Pang H., Fan C., Zhou W., Optical Engineering, 2011, vol. 50, no. 5, 055802. https://doi.org/10.1117/1.3577704
27. Kumar D., Nishchal N. K., Optik, 2016, vol. 127, no. 24, pp. 12069–12077. https://doi.org/10.1016/j.ijleo.2016.09.114
28. Horisaki R., Nishizaki Y., Kitaguchi K., Saito M., Tanida J., Applied Optics, vol. 60, no. 4, pp. A323–A328. https://doi.org/10.1364/AO.404151
29. Shimobaba T., Blinder D., Birnbaum T., Hoshi I., Shiomi H., Schelkens P., Ito T., Frontiers in Photonics, 2022, vol. 3, 854391. https://doi.org/10.3389/fphot.2022.854391
30. Shi L., Li B., Kim C., Kellnhofer P., Matusik W., Nature, 2021, vol. 591, no. 7849, pp. 234–239. https://doi.org/10.1038/s41586-020-03152-0
31. Gerchberg R. W., Saxton W. O., A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik, 1972, vol. 75, no. 2, pp. 237–246.
32. Wyrowski F., Bryngdahl O., Journal of the Optical Society of America A, 1988, vol. 5, no. 7, pp. 1058–1065. https://doi.org/10.1364/JOSAA.5.001058
33. Curtis F. E., Que X., Mathematical Programming Computation, 2015, vol. 7, no. 4, pp. 399–428. https://doi.org/10.1007/s12532-015-0086-2
34. Verrier N., Atlan M., Applied Optics, 2011, vol. 50, no. 34, pp. H136–H146. https://doi.org/10.1364/AO.50.00H136
35. Evtikhiev N. N., Rodin V. G., Savchenkova E. A., Starikov R. S., Cheremkhin P. A., Measurement techniques, 2022, vol. 65, no. 6, pp. 432–437. https://doi.org/10.1007/s11018-022-02101-9
36. Gonzalez R. C, Woods R. E., Digit al Image Processing. Prentice Hall, 2008, 954 p.
Supplementary files
Review
For citations:
Zlokazov E.Yu., Minaeva E.D., Rodin V.G., Starikov R.S., Cheremkhin P.A., Shifrina A.V. Diffractive optical elements generation by layer-based methods for rapid and high-quality formation of 3D-objects. Izmeritel`naya Tekhnika. 2023;(11):45-51. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-11-45-51