Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Diffractive optical elements generation by layer-based methods for rapid and high-quality formation of 3D-objects

https://doi.org/10.32446/0368-1025it.2023-11-45-51

Abstract

The article is devoted to the generation of diffractive optical elements and computer holograms for forming three-dimensional images. Possibilities of increasing the speed of diffractive optical elements generation and the quality of reconstructed 3D-objects were investigated. Four methods of optical elements generation were analyzed. The methods use division the 3D-objects into fl at layers. The quality of 3D-object reconstruction and time generation by the methods were assessed. 3D-object reconstruction from generated optical elements was modeled. Optical formation of objects was performed by displaying optical elements onto liquid crystal spatial light modulator. It was found that the best quality of reconstruction was provided by iterative parallel ping-pong and non-convex optimization methods. The optimal ratio of reconstruction quality to generation speed ratio was obtained for the parallel ping-pong method. The possibility of fast formation high-quality three-dimensional scenes consisting of dozens of layers has been demonstrated.

About the Authors

E. Yu. Zlokazov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Evgenii Yu. Zlokazov

Moscow



E. D. Minaeva
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Ekaterina D. Minaeva

Moscow



V. G. Rodin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Vladislav G. Rodin

Moscow



R. S. Starikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Rostislav S. Starikov

Moscow



P. A. Cheremkhin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Pavel A. Cheremkhin

Moscow



A. V. Shifrina
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Anna V. Shifrina

Moscow



References

1. Difraktsionnaya komp’yuternaya optika (Diffractive computer optics), ed. by V. A. Soifer, Moscow, Fizmatlit Publ., 2007, 736 p. (In Russ.)

2. Doskolovich L. L., Mingazov A. A., Byzov E. V., Bykov D. A., Bezus E. A., Computer Optics, 2022, vol. 46, no. 2, pp. 173–183 (In Russ.) https://doi.org/10.18287/2412-6179-CO-1029

3. Schmidt S., Thiele S., Toulouse A., Bösel C., Tiess T., Herkommer A., Gross H., Giessen H., Optica, 2020, vol. 7, no. 10, pp. 1279–1286. https://doi.org/10.1364/OPTICA.395177

4. Khorin P. A., Khonina S. N., Journal of Optical Technology, 2023, vol. 90, no. 5, pp. 236–241. https://doi.org/10.1364/JOT.90.000236

5. Pi D., Liu J., Wang Y., Light: Science & Applications, 2022, vol. 11, 231. https://doi.org/10.1038/s41377-022-00916-3

6. Shi K., Yoshimoto N., Zhang G., Optics Express, 2023, vol. 31, no. 21, pp. 34817–34826. https://doi.org/10.1364/OE.501898

7. Di Leonardo R., Ianni F., Ruocco G., Optics Express, 2007, vol. 15, no. 4, pp. 1913–1922. https://doi.org/10.1364/OE.15.001913

8. Yang S., Papagiakoumou E., Guillon M., de Sars V., Tang Ch.-M., Emiliani V., Journal of Neural Engineering, 2011, vol. 8, 046002. https://doi.org/10.1088/1741-2560/8/4/046002

9. Faini G., Tanese D., Molinier C. et al, Nature Communications, 2023, vol. 8, 1888. https://doi.org/10.1038/s41467-023-37416-w

10. Lesem L. B., Hirsch P. M., Jordan J. A., IBM Journal of Research and Development, 1969, vol. 13, no. 2, pp. 150–155. https://doi.org/10.1147/rd.132.0150

11. Kompanets I. N., Andreev A. L., Quantum Electronics, 2017, vol. 47, no. 4, pp. 294–302. https://doi.org/10.1070/QEL16293

12. Evtikhiev N. N., Krasnov V. V., Ryabcev I. P., Rodin V. G., Starikov R. S., Cheremkhin P. A., Measurement Techniques, 2021, vol. 64, no. 5, pp. 346–351. https://doi.org/10.1007/s11018-021-01940-2

13. Yin K., Hsiang E.-L., Zou J., Li Y., Yang Z., Yang Q., Lai P.-C., Lin C.-L., Wu S.-T., Light: Science & Applications, 2022, vol. 11, 161. https://doi.org/10.1038/s41377-022-00851-3

14. Rymov D. A., Shifrina A. V., Cheremkhin P. A., Rodin V. G., Krasnov V. V., Measurement Techniques, 2023, vol. 66, no. 6, pp. 392–397. https://doi.org/10.1007/s11018-023-02239-0

15. Correa-Rojas N. A., Gallego-Ruiz R. D., Álvarez-Castaño M. I., Computer Optics, 2022, vol. 46, no. 1, pp. 30–38. https://doi.org/10.18287/2412-6179-CO-857

16. Park J.-H., Journal of Information Display, 2016, vol. 18, no. 1, pp. 1–12. https://doi.org/10.1080/15980316.2016.1255672

17. Wakunami K., Yamaguchi M., Optics Express, 2011, vol. 19, no. 10, pp. 9086–9101. https://doi.org/10.1364/OE.19.009086

18. Ichigawa T., Yoneyama T., Sakamoto Y., Optics Express, 2013, vol. 21, no. 26, pp. 32019–32031. https://doi.org/10.1364/OE.21.032019

19. Zhang Y., Fan H., Wang F., Gu X., Qian X., Poon T.-C., Applied Optics, 2022, vol. 61, no. 5, pp. B363–B374. https://doi.org/10.1364/AO.444973

20. Zhang J., Pegard N., Zhong J., Adesnik H., Waller L., Optica, 2017, vol. 4, no. 10, pp. 1306–1313. https://doi.org/10.1364/OPTICA.4.001306

21. Clark T. W., Offer R. F., Franke-Arnold S., Arnold A. S., Radwell N., Optics Express, 2016, vol. 24, no. 6, pp. 6249–6264. https://doi.org/10.1364/OE.24.006249

22. Piestun R., Spektor B., Shamir J., Journal of the Optical Society of America A, 1996, vol. 13, no. 9, pp. 1837–1848. https://doi.org/10.1364/JOSAA.13.001837

23. Xiao-yu J. A., Chuang P., Xi W., Yantao Z., Proceedings of SPIE, 2012, vol. 8556, 85561H. https://doi.org/10.1117/12.981934

24. Makowski M., Sypek M., Kolodziejczyk A. Mikula G., Suszek J., Optical Engineering, 2007, vol. 46, no. 4, 045802. https://doi.org/10.1117/1.2727379

25. Dorsch R. G., Lohmann A. W., Sinzinger S., Applied Optics, 1994, vol. 33, no. 5, pp. 869–875. https://doi.org/10.1364/AO.33.000869

26. Ying C., Pang H., Fan C., Zhou W., Optical Engineering, 2011, vol. 50, no. 5, 055802. https://doi.org/10.1117/1.3577704

27. Kumar D., Nishchal N. K., Optik, 2016, vol. 127, no. 24, pp. 12069–12077. https://doi.org/10.1016/j.ijleo.2016.09.114

28. Horisaki R., Nishizaki Y., Kitaguchi K., Saito M., Tanida J., Applied Optics, vol. 60, no. 4, pp. A323–A328. https://doi.org/10.1364/AO.404151

29. Shimobaba T., Blinder D., Birnbaum T., Hoshi I., Shiomi H., Schelkens P., Ito T., Frontiers in Photonics, 2022, vol. 3, 854391. https://doi.org/10.3389/fphot.2022.854391

30. Shi L., Li B., Kim C., Kellnhofer P., Matusik W., Nature, 2021, vol. 591, no. 7849, pp. 234–239. https://doi.org/10.1038/s41586-020-03152-0

31. Gerchberg R. W., Saxton W. O., A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik, 1972, vol. 75, no. 2, pp. 237–246.

32. Wyrowski F., Bryngdahl O., Journal of the Optical Society of America A, 1988, vol. 5, no. 7, pp. 1058–1065. https://doi.org/10.1364/JOSAA.5.001058

33. Curtis F. E., Que X., Mathematical Programming Computation, 2015, vol. 7, no. 4, pp. 399–428. https://doi.org/10.1007/s12532-015-0086-2

34. Verrier N., Atlan M., Applied Optics, 2011, vol. 50, no. 34, pp. H136–H146. https://doi.org/10.1364/AO.50.00H136

35. Evtikhiev N. N., Rodin V. G., Savchenkova E. A., Starikov R. S., Cheremkhin P. A., Measurement techniques, 2022, vol. 65, no. 6, pp. 432–437. https://doi.org/10.1007/s11018-022-02101-9

36. Gonzalez R. C, Woods R. E., Digit al Image Processing. Prentice Hall, 2008, 954 p.


Supplementary files

Review

For citations:


Zlokazov E.Yu., Minaeva E.D., Rodin V.G., Starikov R.S., Cheremkhin P.A., Shifrina A.V. Diffractive optical elements generation by layer-based methods for rapid and high-quality formation of 3D-objects. Izmeritel`naya Tekhnika. 2023;(11):45-51. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-11-45-51

Views: 325


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)