

Thermodynamic properties of refrigerant trans-1,3,3,3-tetrafluoropropene: method for constructing the fundamental equation of state and calculation of thermodynamic tables
https://doi.org/10.32446/0368-1025it.2023-10-32-40
Abstract
A new environmentally friendly fourth-generation refrigerant trans-1,3,3,3-tetrafluoropropene R1234ze(E) is considered as an alternative to R134a refrigerant in chillers and heat pumps, as well as R22 refrigerant in air conditioning systems. A technique has been developed for constructing a unified fundamental equation of state of liquid and gas, implemented for trans-1,3,3,3-tetrafluoropropene. The proposed fundamental equation in the vicinity of the critical point satisfies the requirements of the scale theory for asymmetric systems, and in the region of rarefied gas it is reduced to the virial equation of state. Based on this fundamental equation, tables of standard reference data on pressure, density, enthalpy, isobaric and isochoric heat capacities, entropy, heat of vaporization, and speed of sound, trans-1,3,3,3-tetrafluoropropene in the region of state parameters in the temperature ranges 169–420 K and pressure 0.1–100 MPa were calculated. A number of statistical characteristics have been calculated – absolute mean deviation, systematic deviation, standard deviation, root mean square deviation, which characterize the accuracy of the proposed fundamental equation in describing the experimental values of equilibrium properties obtained in generally recognized international thermophysical centers. It has been established that the values of these statistical characteristics are significantly less than the values of the corresponding characteristics of international fundamental equations given in the literature when describing thermal and caloric experimental data of trans-1,3,3,3-tetrafluoropropene. The estimated expanded uncertainties of the tabulated data obtained based on the proposed fundamental equation were 0.26 % for density, 0.57 % for pressure, 1.7 and 1.2 % for isochoric and isobaric heat capacities, 0.38 % for speed of sound. The results obtained allow us to conclude that the proposed unified fundamental equation of state adequately conveys the thermodynamic characteristics of trans-1,3,3,3-tetrafluoropropene in the specified range of temperatures and pressures.
About the Authors
S. V. RykovRussian Federation
Sergey V. Rykov
St. Petersburg
P. V. Popov
Russian Federation
Peter V. Popov
Moscow
I. V. Kudryavtseva
Russian Federation
Irina V. Kudryavtseva
St. Petersburg
V. A. Rykov
Russian Federation
Vladimir A. Rykov
St. Petersburg
References
1. Thol M., Lemmon E. W., International Journal of Thermophysics, 2016, vol. 37, 28. https://doi.org/10.1007/s10765-016-2040-6
2. Astina I. M., Budiarso G., Harrison R., Fluid Phase Equilibria, 2021, vol. 531, 112921. https://doi.org/10.1016/j.fluid.2020.112921
3. Brown J. S., Di Nicola G., Zilio C., Fedele L., Bobbo S., Polonara F., Journal of Chemical & Engineering Data, 2012, vol. 57, pp. 3710–3720, https://doi.org/10.1021/je300945r
4. Klomfar J., Součková M., Pátek J., Journal of Chemical & Engineering Data, 2012, vol. 57, pp. 3270–3277. https://doi.org/10.1021/je3008974
5. McLinden M. J. O., Thol M., Lemmon E. W., Thermodynamic properties of trans-1,3,3,3-tetrafluoropropene [R1234ze(E)]: measurements of density and vapor pressure and a comprehensive equation of state, International Refrigeration and Air Conditioning Conference, July 12–15, 2010, 2189, рр. 1–8.
6. Qiu G., Meng X., Wu J., Journal of Chemical Thermodynamics, 2013, vol. 60, pp. 150–158. https://doi.org/10.1016/j.jct.2013.01.006
7. Tanaka K., Takahashi G., Higashi Y., Journal of Chemical & Engineering Data, 2010, vol. 55, pp. 2169–2172. https://doi.org/10.1021/je900756g
8. Tanaka K., Higashi Y., Journal of Chemical & Engineering Data, 2010, vol. 55, pp. 5164–5168. https://doi.org/10.1021/je100707s
9. Yin J., Zhou Y., Zhao G., Ma S., Fluid Phase Equilibria, 2018, vol. 460, pp. 69–74. https://doi.org/10.1016/j.fluid.2017.12.030
10. Zhang H., Gong M., Li H., Guo H., Dong X., Wu J., Fluid Phase Equilibria, 2016, vol. 408, pp. 232–239. https://doi.org/10.1016/j.fluid.2015.09.010
11. Wang L., Song J., Sheng B., Dong X., Zhao Y., Zhong Q., Yan H., Gong M., Journal of Chemical Thermodynamics, 2020, vol. 141, 105936. https://doi.org/10.1016/j.jct.2019.105936
12. Al Ghafri S. Z. S., Rowland D., Akhfash M., et al., International Journal of Refrigeration, 2019, vol. 98, pp. 249–260. https://doi.org/10.1016/j.ijrefrig.2018.10.027
13. Gao N., Chen G., Li R., Wang Y., He Y., Yang B., Journal of Thermal Analysis and Calorimetry, 2015, vol. 122, pp. 1469– 1476. https://doi.org/10.1007/s10973-015-4837-0
14. Kagawa N., Matsuguchi A., Watanabe K., Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2011, vol. 28, pp. 71–76. https://doi.org/10.11322/tjsrae.28.71
15. Liu Y., Zhao X., He H., Wang R., Journal of Chemical & Engineering Data, 2018, vol. 63, pp. 113–118. https://doi.org/10.1021/acs.jced.7b00713
16. Kano Y., Kayukawa Y., Fujii K., Journal of Chemical & Engineering Data, 2013, vol. 58, pp. 2966–2969. https://doi.org/10.1021/je4004564
17. Perkins R. A., McLinden M. O., Journal of Chemical Thermodynamics, 2015, vol. 91, pp. 43–61. https://doi.org/10.1016/j.jct.2015.07.005
18. Chen Q., Gao R., Guan X., Du L., Chen G., Tang L., Journal of Chemical & Engineering Data, 2020, vol. 65, pp. 4230– 4235. https://doi.org/10.1021/acs.jced.0c00219
19. Qi Y., Yang H., Zhang C., Journal of Chemical Thermodynamics, 2019, vol. 135, pp. 68–74. https://doi.org/10.1016/j.jct.2019.03.016
20. Yang T., Hu X., Meng X., Wu J., Journal of Chemical Thermodynamics, 2020, vol. 150, 106222. https://doi.org/10.1016/j.jct.2020.106222
21. Gong M., Zhang H., Li H., Zhong Q., Dong X., Shen J., Wu J., International Journal of Refrigeration, 2016, vol. 64, pp. 168–175. https://doi.org/10.1016/j.ijrefrig.2016.01.007
22. Tanaka K., Journal of Chemical & Engineering Data, 2016, vol. 61, pp. 1645–1648. https://doi.org/10.1021/acs.jced.5b01039
23. Ye G., Fang Y., Guo Zh., Ni H., Zhuang Y., Han X., Chen G., Journal of Chemical & Engineering Data, 2021, vol. 66, pp. 1741– 1753. https://doi.org/10.1021/acs.jced.0c01033
24. Higashi Y., Tanaka K., Journal of Chemical & Engineering Data, 2010, vol. 55, pp. 1594–1597. https://doi.org/10.1021/je900696z
25. An B., Yang F., Yang K., Duan Y., Yang Zh., Journal of Chemical & Engineering Data, 2018, vol. 63, pp. 2075–2080. https://doi.org/10.1021/acs.jced.8b00090
26. Zhang K., Chen H., Yang Zh., Duan Y., Journal of Chemical Thermodynamics, 2020, vol. 149, 106160. https://doi.org/10.1016/j.jct.2020.106160
27. Pierantozzi M., Tomassetti S., Di Nicola G., Applied Sciences, 2020, vol. 10, 2014. https://doi.org/10.3390/app10062014
28. Devecioğlu A. G., Oruç V., Environmentally-Benign Energy Solutions. Green Energy and Technology, 2020, рp. 87–96. https://doi.org/10.1007/978-3-030-20637-6_4
29. Ma Sh., Modern Theory of Critical Phenomena, New York, Roudedge, 1980, 298 p.
30. Rykov S. V., Kudryavtseva I. V., Journal of Physics: Conference Series, 2021, vol. 2057, 012112. https://doi.org/10.1088/1742-6596/2057/1/012112
31. Rykov V.A., Journal of Engineering Physics, 1985, vol. 48, pp. 476–481. https://doi.org/10.1007/BF00872077
32. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Journal of Physics: Conference Series, 2020, vol. 1565, 012038. https://doi.org/10.1088/1742-6596/1565/1/012038
33. Kolobaev V. A., Rykov S. V., Kudryavtseva I. V., et al., Measurement Techniques, 2022, vol. 65, no. 5, pp. 330–338. https://doi.org/10.1007/s11018-022-02084-7
34. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Rykov S. A., Konjaev D. V., Journal of International Academy of Refrigeration, 2023, no 2, pp. 82–88 (In Russ.) https://doi.org/10.17586/1606-4313-2023-22-2-82-88
35. Rykov S. V., The fundamental equation of state considering asymmetry of fluid, Scientific and Technical Volga region Bulletin, 2014, no. 1, pp. 33–36 (In Russ.)
36. Rykov V. A., Varfolomeeva G. B., Journal of Engineering Physics, 1985, vol. 48, pp. 341– 345. https://doi.org/10.1007/BF00878203
37. Kozlov A. D., Lysenkov V. F., Popov P. V., Rykov V. A., Journal of Engineering Physics and Thermophysics, 1992, vol. 62, no. 6, pp. 611– 617. https://doi.org/10.1007/BF00851887
38. Kolobaev V. A., Rykov S. V., Kudryavtseva I. V., Ustyuzhanin E. E., Popov P. V., Rykov V. A., Kozlov A. D., Measurement Techniques, 2023, vol. 65, no. 11, pp. 793–802. https://doi.org/10.1007/s11018-023-02153-5
39. Benedek G. B. In polarisation matie et payonnement, livre de Jubile en l’honneur du proffesor A. Kastler, Paris, Presses Universitaires de Paris, 1968, р. 71. (In French)
40. Rykov S. V., Kudryavtseva I. V., Fundamental research, 2014, no. 9(8), pp. 1687– 1692 (In Russ.)
41. Widom B., Journal of Chemical Physics, 1965, vol. 43, pp. 255–262. https://doi.org/10.1063/1.1696618
42. Kudryavtseva I. V., Rykov S. V., Russian Journal of Physical Chemistry A, 2016, vol. 90, pp. 1493–1495. https://doi.org/10.1134/S0036024416070153
43. Rykov S. V., Sverdlov A. V., Rykov V. A., Kudryavtseva I. V., Ustyuzhanin E. E., Journal of International Academy of Refrigeration, 2020, no. 3, pp. 83–90 (In Russ.) https://doi.org/10.17586/1606-4313-2020-19-3-83-90
44. Bezverkhii P. P., Dutova O. S., Thermophysics and Aeromechanics, 2023, vol. 30, pp. 137–151. https://doi.org/10.1134/S086986432301016X
45. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Konyaev D. V., Journal of International Academy of Refrigeration, 2022, no. 4, pp. 76–83 (In Russ.) https://doi.org/10.17586/1606-4313-2022-21-4-76-83
46. Kolobaev V. A., Rykov S. V., Kudryavtseva I. V., Ustyuzhanin E. E., Popov P. V., Rykov V. A., Sverdlov A. V., Kozlov A. D., Measurement Techniques, 2021, vol. 64, no. 2, pp. 86–93. https://doi.org/10.1007/s11018-021-01901-9
47. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Popov P. V., Solomichev R. I., Rykov S. A., Journal of International Academy of Refrigeration, 2023, no. 3. pp. 61–67 (In Russ.) https://doi.org/10.17586/1606-4313-2023-22-3-61-67
Supplementary files
Review
For citations:
Rykov S.V., Popov P.V., Kudryavtseva I.V., Rykov V.A. Thermodynamic properties of refrigerant trans-1,3,3,3-tetrafluoropropene: method for constructing the fundamental equation of state and calculation of thermodynamic tables. Izmeritel`naya Tekhnika. 2023;(10):32-40. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-10-32-40