Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Thermodynamic properties of refrigerant trans-1,3,3,3-tetrafluoropropene: method for constructing the fundamental equation of state and calculation of thermodynamic tables

https://doi.org/10.32446/0368-1025it.2023-10-32-40

Abstract

A new environmentally friendly fourth-generation refrigerant trans-1,3,3,3-tetrafluoropropene R1234ze(E) is considered as an alternative to R134a refrigerant in chillers and heat pumps, as well as R22 refrigerant in air conditioning systems. A technique has been developed for constructing a unified fundamental equation of state of liquid and gas, implemented for trans-1,3,3,3-tetrafluoropropene. The proposed fundamental equation in the vicinity of the critical point satisfies the requirements of the scale theory for asymmetric systems, and in the region of rarefied gas it is reduced to the virial equation of state. Based on this fundamental equation, tables of standard reference data on pressure, density, enthalpy, isobaric and isochoric heat capacities, entropy, heat of vaporization, and speed of sound, trans-1,3,3,3-tetrafluoropropene in the region of state parameters in the temperature ranges 169–420 K and pressure 0.1–100 MPa were calculated. A number of statistical characteristics have been calculated – absolute mean deviation, systematic deviation, standard deviation, root mean square deviation, which characterize the accuracy of the proposed fundamental equation in describing the experimental values of equilibrium properties obtained in generally recognized international thermophysical centers. It has been established that the values of these statistical characteristics are significantly less than the values of the corresponding characteristics of international fundamental equations given in the literature when describing thermal and caloric experimental data of trans-1,3,3,3-tetrafluoropropene. The estimated expanded uncertainties of the tabulated data obtained based on the proposed fundamental equation were 0.26 % for density, 0.57 % for pressure, 1.7 and 1.2 % for isochoric and isobaric heat capacities, 0.38 % for speed of sound. The results obtained allow us to conclude that the proposed unified fundamental equation of state adequately conveys the thermodynamic characteristics of trans-1,3,3,3-tetrafluoropropene in the specified range of temperatures and pressures.

About the Authors

S. V. Rykov
University ITMO
Russian Federation

Sergey V. Rykov

St. Petersburg



P. V. Popov
Russian Research Institute for Metrological Service
Russian Federation

Peter V. Popov

Moscow



I. V. Kudryavtseva
University ITMO
Russian Federation

Irina V. Kudryavtseva

St. Petersburg



V. A. Rykov
University ITMO
Russian Federation

Vladimir A. Rykov

St. Petersburg



References

1. Thol M., Lemmon E. W., International Journal of Thermophysics, 2016, vol. 37, 28. https://doi.org/10.1007/s10765-016-2040-6

2. Astina I. M., Budiarso G., Harrison R., Fluid Phase Equilibria, 2021, vol. 531, 112921. https://doi.org/10.1016/j.fluid.2020.112921

3. Brown J. S., Di Nicola G., Zilio C., Fedele L., Bobbo S., Polonara F., Journal of Chemical & Engineering Data, 2012, vol. 57, pp. 3710–3720, https://doi.org/10.1021/je300945r

4. Klomfar J., Součková M., Pátek J., Journal of Chemical & Engineering Data, 2012, vol. 57, pp. 3270–3277. https://doi.org/10.1021/je3008974

5. McLinden M. J. O., Thol M., Lemmon E. W., Thermodynamic properties of trans-1,3,3,3-tetrafluoropropene [R1234ze(E)]: measurements of density and vapor pressure and a comprehensive equation of state, International Refrigeration and Air Conditioning Conference, July 12–15, 2010, 2189, рр. 1–8.

6. Qiu G., Meng X., Wu J., Journal of Chemical Thermodynamics, 2013, vol. 60, pp. 150–158. https://doi.org/10.1016/j.jct.2013.01.006

7. Tanaka K., Takahashi G., Higashi Y., Journal of Chemical & Engineering Data, 2010, vol. 55, pp. 2169–2172. https://doi.org/10.1021/je900756g

8. Tanaka K., Higashi Y., Journal of Chemical & Engineering Data, 2010, vol. 55, pp. 5164–5168. https://doi.org/10.1021/je100707s

9. Yin J., Zhou Y., Zhao G., Ma S., Fluid Phase Equilibria, 2018, vol. 460, pp. 69–74. https://doi.org/10.1016/j.fluid.2017.12.030

10. Zhang H., Gong M., Li H., Guo H., Dong X., Wu J., Fluid Phase Equilibria, 2016, vol. 408, pp. 232–239. https://doi.org/10.1016/j.fluid.2015.09.010

11. Wang L., Song J., Sheng B., Dong X., Zhao Y., Zhong Q., Yan H., Gong M., Journal of Chemical Thermodynamics, 2020, vol. 141, 105936. https://doi.org/10.1016/j.jct.2019.105936

12. Al Ghafri S. Z. S., Rowland D., Akhfash M., et al., International Journal of Refrigeration, 2019, vol. 98, pp. 249–260. https://doi.org/10.1016/j.ijrefrig.2018.10.027

13. Gao N., Chen G., Li R., Wang Y., He Y., Yang B., Journal of Thermal Analysis and Calorimetry, 2015, vol. 122, pp. 1469– 1476. https://doi.org/10.1007/s10973-015-4837-0

14. Kagawa N., Matsuguchi A., Watanabe K., Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2011, vol. 28, pp. 71–76. https://doi.org/10.11322/tjsrae.28.71

15. Liu Y., Zhao X., He H., Wang R., Journal of Chemical & Engineering Data, 2018, vol. 63, pp. 113–118. https://doi.org/10.1021/acs.jced.7b00713

16. Kano Y., Kayukawa Y., Fujii K., Journal of Chemical & Engineering Data, 2013, vol. 58, pp. 2966–2969. https://doi.org/10.1021/je4004564

17. Perkins R. A., McLinden M. O., Journal of Chemical Thermodynamics, 2015, vol. 91, pp. 43–61. https://doi.org/10.1016/j.jct.2015.07.005

18. Chen Q., Gao R., Guan X., Du L., Chen G., Tang L., Journal of Chemical & Engineering Data, 2020, vol. 65, pp. 4230– 4235. https://doi.org/10.1021/acs.jced.0c00219

19. Qi Y., Yang H., Zhang C., Journal of Chemical Thermodynamics, 2019, vol. 135, pp. 68–74. https://doi.org/10.1016/j.jct.2019.03.016

20. Yang T., Hu X., Meng X., Wu J., Journal of Chemical Thermodynamics, 2020, vol. 150, 106222. https://doi.org/10.1016/j.jct.2020.106222

21. Gong M., Zhang H., Li H., Zhong Q., Dong X., Shen J., Wu J., International Journal of Refrigeration, 2016, vol. 64, pp. 168–175. https://doi.org/10.1016/j.ijrefrig.2016.01.007

22. Tanaka K., Journal of Chemical & Engineering Data, 2016, vol. 61, pp. 1645–1648. https://doi.org/10.1021/acs.jced.5b01039

23. Ye G., Fang Y., Guo Zh., Ni H., Zhuang Y., Han X., Chen G., Journal of Chemical & Engineering Data, 2021, vol. 66, pp. 1741– 1753. https://doi.org/10.1021/acs.jced.0c01033

24. Higashi Y., Tanaka K., Journal of Chemical & Engineering Data, 2010, vol. 55, pp. 1594–1597. https://doi.org/10.1021/je900696z

25. An B., Yang F., Yang K., Duan Y., Yang Zh., Journal of Chemical & Engineering Data, 2018, vol. 63, pp. 2075–2080. https://doi.org/10.1021/acs.jced.8b00090

26. Zhang K., Chen H., Yang Zh., Duan Y., Journal of Chemical Thermodynamics, 2020, vol. 149, 106160. https://doi.org/10.1016/j.jct.2020.106160

27. Pierantozzi M., Tomassetti S., Di Nicola G., Applied Sciences, 2020, vol. 10, 2014. https://doi.org/10.3390/app10062014

28. Devecioğlu A. G., Oruç V., Environmentally-Benign Energy Solutions. Green Energy and Technology, 2020, рp. 87–96. https://doi.org/10.1007/978-3-030-20637-6_4

29. Ma Sh., Modern Theory of Critical Phenomena, New York, Roudedge, 1980, 298 p.

30. Rykov S. V., Kudryavtseva I. V., Journal of Physics: Conference Series, 2021, vol. 2057, 012112. https://doi.org/10.1088/1742-6596/2057/1/012112

31. Rykov V.A., Journal of Engineering Physics, 1985, vol. 48, pp. 476–481. https://doi.org/10.1007/BF00872077

32. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Journal of Physics: Conference Series, 2020, vol. 1565, 012038. https://doi.org/10.1088/1742-6596/1565/1/012038

33. Kolobaev V. A., Rykov S. V., Kudryavtseva I. V., et al., Measurement Techniques, 2022, vol. 65, no. 5, pp. 330–338. https://doi.org/10.1007/s11018-022-02084-7

34. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Rykov S. A., Konjaev D. V., Journal of International Academy of Refrigeration, 2023, no 2, pp. 82–88 (In Russ.) https://doi.org/10.17586/1606-4313-2023-22-2-82-88

35. Rykov S. V., The fundamental equation of state considering asymmetry of fluid, Scientific and Technical Volga region Bulletin, 2014, no. 1, pp. 33–36 (In Russ.)

36. Rykov V. A., Varfolomeeva G. B., Journal of Engineering Physics, 1985, vol. 48, pp. 341– 345. https://doi.org/10.1007/BF00878203

37. Kozlov A. D., Lysenkov V. F., Popov P. V., Rykov V. A., Journal of Engineering Physics and Thermophysics, 1992, vol. 62, no. 6, pp. 611– 617. https://doi.org/10.1007/BF00851887

38. Kolobaev V. A., Rykov S. V., Kudryavtseva I. V., Ustyuzhanin E. E., Popov P. V., Rykov V. A., Kozlov A. D., Measurement Techniques, 2023, vol. 65, no. 11, pp. 793–802. https://doi.org/10.1007/s11018-023-02153-5

39. Benedek G. B. In polarisation matie et payonnement, livre de Jubile en l’honneur du proffesor A. Kastler, Paris, Presses Universitaires de Paris, 1968, р. 71. (In French)

40. Rykov S. V., Kudryavtseva I. V., Fundamental research, 2014, no. 9(8), pp. 1687– 1692 (In Russ.)

41. Widom B., Journal of Chemical Physics, 1965, vol. 43, pp. 255–262. https://doi.org/10.1063/1.1696618

42. Kudryavtseva I. V., Rykov S. V., Russian Journal of Physical Chemistry A, 2016, vol. 90, pp. 1493–1495. https://doi.org/10.1134/S0036024416070153

43. Rykov S. V., Sverdlov A. V., Rykov V. A., Kudryavtseva I. V., Ustyuzhanin E. E., Journal of International Academy of Refrigeration, 2020, no. 3, pp. 83–90 (In Russ.) https://doi.org/10.17586/1606-4313-2020-19-3-83-90

44. Bezverkhii P. P., Dutova O. S., Thermophysics and Aeromechanics, 2023, vol. 30, pp. 137–151. https://doi.org/10.1134/S086986432301016X

45. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Konyaev D. V., Journal of International Academy of Refrigeration, 2022, no. 4, pp. 76–83 (In Russ.) https://doi.org/10.17586/1606-4313-2022-21-4-76-83

46. Kolobaev V. A., Rykov S. V., Kudryavtseva I. V., Ustyuzhanin E. E., Popov P. V., Rykov V. A., Sverdlov A. V., Kozlov A. D., Measurement Techniques, 2021, vol. 64, no. 2, pp. 86–93. https://doi.org/10.1007/s11018-021-01901-9

47. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Popov P. V., Solomichev R. I., Rykov S. A., Journal of International Academy of Refrigeration, 2023, no. 3. pp. 61–67 (In Russ.) https://doi.org/10.17586/1606-4313-2023-22-3-61-67


Supplementary files

Review

For citations:


Rykov S.V., Popov P.V., Kudryavtseva I.V., Rykov V.A. Thermodynamic properties of refrigerant trans-1,3,3,3-tetrafluoropropene: method for constructing the fundamental equation of state and calculation of thermodynamic tables. Izmeritel`naya Tekhnika. 2023;(10):32-40. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-10-32-40

Views: 233


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)