

On an approximate method for reconstructing input signals of measuring transformers
https://doi.org/10.32446/0368-1025it.2021-12-3-7
Abstract
In information and measuring technology, there are a large number of tasks when some physical variable, the values of which must be determined, are inaccessible to measurements, but its value can be determined knowing the functional (or operator) of another physical variable available to measurements. This range of tasks includes measuring transformers, the dynamics of which is modeled by ordinary differential equations. The direct application of these models for the reconstruction of input signals has not received proper development due to the need to calculate the derivatives (possibly high orders) of signals noisy with interference. In this paper, we propose a method for recovering the input signals of measuring transformers, in which the signal of interest to the observer is associated with the measured signal by the differentiation operator. For the numerical calculation of derivatives, the apparatus of hypersingular integrals is used. Approximate methods for calculating derivatives, expressed by quadrature formulas for hypersingular integrals, are presented. The method for recovering input signals is tested for one accelerometer model. The high efficiency of the proposed method has been demonstrated.
About the Authors
I. V. BoikovRussian Federation
Ilia V. Boikov
Penza
N. P. Krivulin
Russian Federation
Nikolay P. Krivulin
Penza
References
1. Granovskiy V. A., Dinamicheskiye izmereniya, Leningrad, Energoatomizdat Publ., 1984, 220 p. (In Russ.)
2. Denisov A. M., Vvedeniye v teoriyu obratnykh zadach, Moscow, MGU Publ., 1994, 297 p. (In Russ.)
3. Hasanoğlu A. H., Romanov V. G., Introduction to Inverse Problems for Diff erential Equations, Springer International Publishing AG, 2017, 264 p.
4. Granovskiy V. A., Theoretical metrology: problems and perspectives, Datchiki i sistemy (Sensors & Systems), 2018, no. 4 (224), pp. 60–68. (In Russ.)
5. Boykov I. V., Krivulin N. P., Programnie sistemy: teoria i prilozenia: elektronnii nauchnii zurnal, 2014, vol. 5, no. 5 (23), pp. 79–96, available at: http://psta.psiras.ru/read/psta2014_5.79-96.pdf (accessed: 10.06.2021). (In Russ.)
6. Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Moscow, Nauka Publ., 1986, 288 p. (In Russ.)
7. Arestov V. V., Nailuchsheye ravnomernoye priblizheniye operatora diff erentsirovaniya ogranichennymi v prostranstve L2 operatorami, Trudy IMM UrO RAN, 2018, vol. 24, no. 4, pp. 34–56. (In Russ.) https://doi.org/10.21538/0134-4889-2018-24-4-34-56
8. Lantsosh K., Prakticheskiye metody prikladnogo analiza, Moscow, Fizmatgiz Publ., 1961, 523 p. (In Russ.)
9. Pat. RU no. 2147750, Krivulin N. P., Meshcheryakov V. A., Kapezin S. V., Murashkina T. I., Baranov S. S, 2000. (In Russ.)
10. Boykov I. V., Krivulin N. P., Analiticheskie i chislennie metody identifi kactii dinamicheskikh system, Penza, PGU Publ., 2016, 398 p. (In Russ.)
11. Boykov I. V., Priblizennie metodi vichisleniy singularnich i gipersingularnich integralov. Chas I. Singularnie integrali, Penza, PGU Publ., 2005, 360 p. (In Russ.)
12. Boykov I. V., Priblizennie metodi vichisleniy singularnich i gipersingularnich integralov. Chast II. Gipersingularnie integrali, Penza, PGU Publ., 2009, 252 p. (In Russ.)
13. Zommerfeld A., Diff erentsialnyye uravneniya v chastnykh proizvodnykh fi ziki, Book of Demand Ltd., 2019, 466 р. (In Russ.)
14. Archibald R., Gelb A., IEEE Transactions on Medical Imaging, 2002, vol. 21, no. 4, pp. 305–319. https://doi.org/10.1109/TMI.2002.1000255
Review
For citations:
Boikov I.V., Krivulin N.P. On an approximate method for reconstructing input signals of measuring transformers. Izmeritel`naya Tekhnika. 2021;(12):3-7. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-12-3-7