Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of the ratio of the mean square deviations of the kernel probability density estimation in the conditions of independent and dependent random variables

https://doi.org/10.32446/0368-1025it.2021-3-9-14

Abstract

The influence on the approximation properties of a nonparametric probability density estimate of Rosenblatt-Parzen type of the information on the dependence of random variables is determined. The ratio of the asymptotic expressions of the mean square deviations of independent and dependent random variables is obtained. This relation for a two-dimensional random variable is considered as a quantitative assessment of the influence of information about their dependence on the approximation properties of the kernel probability density estimate. The established ratio is determined by the kind of probability density and the volumes of the initial statistical data that are used in estimating the probability densities of dependent and independent random variables. The general results obtained are considered in detail for two-dimensional linearly dependent random variables with normal distribution laws. The functional dependence of the ratio of the mean square deviations of the independent and dependent two-dimensional random variables on the correlation coefficient is determined. The dependence of the considered ratio on the volume of statistical data is analyzed. A method for estimating the functional of the second derivatives of two-dimensional random variables with normal distribution laws is developed. The results obtained are the basis for the development of modifi cations of “fast” procedures for optimizing kernel estimates of probability densities in conditions of large samples.

About the Authors

A. V. Lapko
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences (ICM SB RAS); Reshetnev Siberian State University of Science and Technology
Russian Federation

Aleksandr V. Lapko

Krasnoyarsk



V. A. Lapko
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences (ICM SB RAS); Reshetnev Siberian State University of Science and Technology
Russian Federation

Vasiliy A. Lapko

Krasnoyarsk



References

1. Parzen E., Annals of Mathematical Statistics, 1962, vol. 33, nо. 3, рр. 1065–1076. https://doi.org/10.1214/aoms/1177704472

2. Rosenblatt M., Annals of Mathematical Statistics, 1971, vol. 42, no. 6, pp. 1815–1842. https://doi.org/10.1214/aoms/1177693050

3. Rudemo M., Scandinavian Journal of Statistics, 1982, vol. 9, no. 2, pp. 65–78.

4. Hall P., Annals of Statistics, 1983, vol. 11, no. 4, pp. 1156–1174.

5. Bowman A. W., Journal of Statistical Computation and Simulation, 1985, vol. 21, pp. 313–327. https://doi.org/10.1080/00949658508810822

6. Li Q., Racine J. S., Nonparametric Econometrics: Theory and Practice, Princeton, Princeton University Press, 2007, 768 p.

7. Dutta S., Communications in Statistics - Simulation and Computation, 2016, vol. 45, no. 2, pp. 472-490. https://doi.org/10.1080/03610918.2013.862275

8. Epanechnikov V. A., Theory of Probability & Its Applications, vol. 14, iss. 1, 1969, pp. 153–158. https://doi.org/10.1137/1114019

9. Devroye L., Gyorfi L. Nonparametric Density Estimation: The L1 View, New York, Wiley, 1985, 380 p.

10. Mania G. M. Statisticheskoe ocenivanie raspredeleniya veroyatnostej, Tbilisi, Tbilisskij gosudarstvennyj universitet Publ., 1974, 238 p. (in Russ.).

11. Lapko A. V., Lapko V. A., Measurement Techniques, 2016, vol. 59, no. 6, pp. 571–576. https://doi.org/10.1007/s11018-016-1010-5

12. Lapko A. V., Lapko V. A., Optoelectronics, Instrumentation and Data Processing, 2014, vol. 50, no. 2, pp. 148–153.

13. Lapko A. V., Lapko V. A., Optoelectronics, Instrumentation and Data Processing, 2018, vol. 54, no. 5, pp. 451–456. https://doi.org/10.3103/S8756699018050047

14. Lapko A. V., Lapko V. A., Im S. T., Tuboltsev V. P., Avdeenok V. A., Optoelectronics, Instrumentation and Data Processing, 2019, vol. 55, no. 3, pp. 230–236. https://doi.org/10.3103/S8756699019030038

15. Lapko A. V., Lapko V. A., Computer Optics, 2019, vol. 43, no. 2, pp. 238–244 (in Russ.). https://doi.org/10.18287/2412-6179-2019-43-2-238-244

16. Borzov S. M., Potaturkin O. I., Optoelectronics Instrumentation and Data Processing, 2020, vol. 56, no. 4, pp. 431–439. https://doi.org/10.3103/S8756699020040032

17. Borzov S. M., Potaturkin O. I., Computer Optics, 2020; vol. 44, no. 6, pp. 937–943 (in Russ.). https://doi.org/10.18287/2412-6179-CO-779

18. Borzov S. M., Guryanov M. A., Potaturkin O. I., Computer Optics, 2019, vol. 43, no. 3, pp. 464–473 (in Russ.). https://doi.org/10.18287/2412-6179-2019-43-3-464-473

19. Gashnikov M. V., Computer Optics, 2020, vol. 44, no. 1, pp. 101–108 (in Russ.). https://doi.org/10.18287/2412-6179-CO-661

20. Kharuk V. I., Im S. T., Dvinskaya M. L., Ranson K. J., Petrov I. A., Journal of Mountain Science, 2017, vol. 14, no. 3, pp. 442–452. https://doi.org/10.1007/s11629-016-4286-7

21. Kharuk V. I., Im S. T., Petrov I. A., Dvinskaya M. L., Fedotova E. V., Ranson K. J., Regional Environmental Change, 2017, vol. 17, no. 3, pp. 803–812. https://doi.org/10.1007/s10113-016-1073-5

22. Zenkov I. V., Nefedov B. N., Anishenko Yu. A., Gilts N. E., Stukova O. O., Vokin V. N., Kiryushina E. V., Scornyakova S. N., Ugol, 2020, no. 9, pp. 72–75 (in Russ.). https://doi.org/10.18796/0041-5790-2020-9-72-75

23. Lapko A. V., Lapko V. A., Informatika i sistemy upravleniya, 2011, vol. 29, no. 3, pp. 118–124 (in Russ.).

24. Lapko A. V., Lapko V. A., Informatika i sistemy upravleniya, 2012, vol. 31, no. 1, pp. 166–174 (in Russ.).

25. Silverman B. W., Density estimation for statistics and data analysis, London, Chapman & Hall, 1986, 175 p.

26. Sheather S., Jones M., Journal of Royal Statistical Society Series B, 1991, vol. 53, no. 3, рр. 683–690. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x

27. Sheather S. J., Statistical Science, 2004, vol. 19, no. 4, рр. 588–597. https://doi.org/10.1214/088342304000000297

28. Terrell G. R., Scott D. W., Journal of the American Statistical Association, 1985, vol. 80, рр. 209–214.

29. Jones M. C., Marron J. S., Sheather S. J., Journal of the American Statistical Association, 1996, vol. 91, рр. 401–407.

30. Scott D. W., Multivariate Density Estimation: Theory, Practice, and Visualization, New Jersey, John Wiley & Sons, 2015. 384 p.

31. Lapko A. V., Lapko V. A., Measurement Techniques, 2018, vol. 61, no. 6, pp. 540–545. https://doi.org/10.1007/s11018-018-1463-9

32. Lapko A. V., Lapko V. A., Measurement Techniques, 2019, vol. 61, no. 10, pp. 979 – 986. https://doi.org/10.1007/s11018-019-01536-x

33. Lapko A. V., Lapko V. A., Measurement Techniques, 2019, vol. 62, no. 5, pp. 383-389. https://doi.org/10.1007/s11018-019-01634-w

34. Lapko A. V., Lapko V. A., Measurement Techniques, 2020, vol. 63, no. 3, pp. 171–176. https://doi.org/10.1007/s11018-020-01768-2


Review

For citations:


Lapko A.V., Lapko V.A. Analysis of the ratio of the mean square deviations of the kernel probability density estimation in the conditions of independent and dependent random variables. Izmeritel`naya Tekhnika. 2021;(3):9-14. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-3-9-14

Views: 85


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)