Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analytical representation of hydrophone complex frequency response

https://doi.org/10.32446/0368-1025it.2021-8-16-20

Abstract

The problem of analytical representation of hydrophone complex frequency response based on a model consisting of an advance line and a minimum-phase part, which describing the effect of sound diffraction and resonance properties of an active element, is considered. Algorithms are proposed for approximating the hydrophone complex frequency response by a fractional-rational function of the complex variable according to the data of the hydrophone amplitude-frequency and/or phasefrequency responses. Examples of the application of these algorithms for processing experimental frequency characteristics of hydrophones are given.

About the Authors

A. E. Isaev
Russian Metrological Institute of Technical Physics and Radio Engineering (VNIIFTRI)
Russian Federation

Alexander E. Isaev

Mendeleevo, Moscow Region



B. I. Khatamtaev
Russian Metrological Institute of Technical Physics and Radio Engineering (VNIIFTRI)
Russian Federation

Bulat I. Khatamtaev

Mendeleevo, Moscow Region



References

1. Isaev A. E., Khatamtaev B. I., Izmeritel’naya tekhnika, 2021, no. 7, pp. 48–53. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-7-48-53

2. Bessonov L. A., Teoreticheskie osnovy ehlektrotekhniki. Ehlektricheskie tsepi: uchebnik dlya bakalavrov, 12th ed., сorrected and additional, Moscow, Yurite Publ., 2014, 701 p. (In Russ.)

3. Saptarshi Das, Indranil Pan, Fractional order signal proce ssing, Springer, Berlin, 2011.

4. Duarte Valéerio, Manuel Duarte Ortigueira, José Sá da Costa, Identifying a transfer function from a frequency response, Transactions of the ASME -Journal of Computational and Nonlinear dynamics, 2008, vol. 3, no. 2, pp. 21–35.

5. Gustavsen B., Improving the pole relocating properties of vector fi tting, IEEE Transactions on Power Delivery, 2006, vol. 21 (3), рр. 1587–1592.

6. Beattie C. A., Gugercin S., Model reduction by rational interpolation, In: Benner P., Cohen A., Ohlberger M., Willcox K. (eds.), Model Reduction and Approximation: Theory and Algorithms, SIAM, Philadelphia, 2017, 432 р.

7. Berljafa M., Güttel S., The RKFIT algorithm for nonlinear rational approximation, SIAM Journal on Scientifi c Computing, 2017, vol. 39 (5), рр. 2049–2071.

8. Drmac Z., Gugercin S., Beattie C., Quadrature-based vector fi tting for discretized H2 approximation, SIAM Journal on Scientifi c Computing, 2015, vol. 37 (2), рр. A625–A652.

9. Drmac Z., Gugercin S., Beattie C., Vector fi tting for matrixvalued rational approximation, SIAM Journal on Scientifi c Computing, 2015, vol. 37 (5), рр. A2346–A2379.

10. Nakatsukasa Y., Trefethen L. N., An algorithm for real and complex rational minimax approximation, SIAM Journal on Scientifi c Computing, 2020, vol. 42 (5), рр. A3157–A3179.


Review

For citations:


Isaev A.E., Khatamtaev B.I. Analytical representation of hydrophone complex frequency response. Izmeritel`naya Tekhnika. 2021;(8):16-20. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-8-16-20

Views: 110


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)