

Analytical representation of hydrophone complex frequency response
https://doi.org/10.32446/0368-1025it.2021-8-16-20
Abstract
The problem of analytical representation of hydrophone complex frequency response based on a model consisting of an advance line and a minimum-phase part, which describing the effect of sound diffraction and resonance properties of an active element, is considered. Algorithms are proposed for approximating the hydrophone complex frequency response by a fractional-rational function of the complex variable according to the data of the hydrophone amplitude-frequency and/or phasefrequency responses. Examples of the application of these algorithms for processing experimental frequency characteristics of hydrophones are given.
About the Authors
A. E. IsaevRussian Federation
Alexander E. Isaev
Mendeleevo, Moscow Region
B. I. Khatamtaev
Russian Federation
Bulat I. Khatamtaev
Mendeleevo, Moscow Region
References
1. Isaev A. E., Khatamtaev B. I., Izmeritel’naya tekhnika, 2021, no. 7, pp. 48–53. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-7-48-53
2. Bessonov L. A., Teoreticheskie osnovy ehlektrotekhniki. Ehlektricheskie tsepi: uchebnik dlya bakalavrov, 12th ed., сorrected and additional, Moscow, Yurite Publ., 2014, 701 p. (In Russ.)
3. Saptarshi Das, Indranil Pan, Fractional order signal proce ssing, Springer, Berlin, 2011.
4. Duarte Valéerio, Manuel Duarte Ortigueira, José Sá da Costa, Identifying a transfer function from a frequency response, Transactions of the ASME -Journal of Computational and Nonlinear dynamics, 2008, vol. 3, no. 2, pp. 21–35.
5. Gustavsen B., Improving the pole relocating properties of vector fi tting, IEEE Transactions on Power Delivery, 2006, vol. 21 (3), рр. 1587–1592.
6. Beattie C. A., Gugercin S., Model reduction by rational interpolation, In: Benner P., Cohen A., Ohlberger M., Willcox K. (eds.), Model Reduction and Approximation: Theory and Algorithms, SIAM, Philadelphia, 2017, 432 р.
7. Berljafa M., Güttel S., The RKFIT algorithm for nonlinear rational approximation, SIAM Journal on Scientifi c Computing, 2017, vol. 39 (5), рр. 2049–2071.
8. Drmac Z., Gugercin S., Beattie C., Quadrature-based vector fi tting for discretized H2 approximation, SIAM Journal on Scientifi c Computing, 2015, vol. 37 (2), рр. A625–A652.
9. Drmac Z., Gugercin S., Beattie C., Vector fi tting for matrixvalued rational approximation, SIAM Journal on Scientifi c Computing, 2015, vol. 37 (5), рр. A2346–A2379.
10. Nakatsukasa Y., Trefethen L. N., An algorithm for real and complex rational minimax approximation, SIAM Journal on Scientifi c Computing, 2020, vol. 42 (5), рр. A3157–A3179.
Review
For citations:
Isaev A.E., Khatamtaev B.I. Analytical representation of hydrophone complex frequency response. Izmeritel`naya Tekhnika. 2021;(8):16-20. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-8-16-20