

Semi-Markov model of the functioning of redundant measuring instruments, taking into account the frequency of verification
https://doi.org/10.32446/0368-1025it.2021-4-22-27
Abstract
The problem of modeling the process of functioning of redundant measuring instruments is considered. On the basis of the developed model, the determination of the frequency of verification of complex duplicated measuring instruments based on the semi-Markov model of the process of their functioning is justified. The relevance of the application of the theory of semi-Markov processes for modeling the functioning of redundant technical systems, including measuring instruments, is shown. A semi-Markov model of the process of functioning of measuring instruments has been developed, which allows us to take into account the influence of the frequency of verification, the provision of measuring instruments with spare elements, as well as the level of reliability and maintainability on the reliability of measuring instruments. A method is found for defining a semi-Markov process that correctly and adequately approximates the real process. The indicator of the effectiveness of the functioning of the measuring instruments and the corresponding modelis the availability factor of the measuring instruments.
About the Authors
V. I. MishchenkoRussian Federation
Vladimir I. Mishchenko
St. Petersburg
A. N. Kravtsov
Russian Federation
Alexander N. Kravtsov
St. Petersburg
T. F. Mamleev
Russian Federation
Timur F. Mamleev
Mytishchi, Moscow Region
References
1. Sychev E. I., Metrologicheskoe obespechenie radioelektronnoy apparaturi [Metrological support of electronic equipment], Moscow, Tatyanin Den Publ.,1993, 274 p. (In Russ.)
2. Mishchenko V. I., Khramov M. Yu., Problematika ekspluatacii slozhnih tekhnicheskih system [Problems of operation of complex technical systems], St. Petersburg, Polytechnic Service Publ., 2016, 218 p. (In Russ.)
3. Raskin L. G., Analiz slozhnih system i elementi optimal’nogo upravleniya [Analysis of complex systems and elements of optimal control], Moscow, Soviet Radio Publ., 1976, 344 p. (In Russ.)
4. Afanasievsky L. B., Gorin A. N., Chursin M. А., Proceedings of Voronezh State University. Series: Systems analysis and information technologies, 2019, no. 3. pp. 42–51. (In Russ.)
5. Kashtanov V. A., Theory Probab. Appl., 2015, vol. 60, no. 2, pp. 281–294. https://doi.org/10.1137/S0040585X97T987600
6. Larkin E. V., Privalov A. N., Chebyshevskii Sbornik, 2018, vol. 19, no. 2 (66), pp. 248–258. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-2-248-258
7. Kashtanov V. A., Strategija tehnicheskogo obsluzhivanija na osnove polumarkovskih processov s konechnym mnozhestvom sostojanij [Maintenance strategy based on semi-Markov processes with a fi nite set of states], Reliability and Quality of Complex Systems, 2013, № 1, pp. 41–46. (In Russ.)
8. Kravchenko V. F., Lutsenko V. I., Masalov S. A., Pustovoit V. I., Doklady Physics, 2013, vol. 58, no. 11, pp. 465–468. https://doi.org/10.1134/S1028335813110074
9. Meshalkin V. P., Bojarinov Ju. G., Theoretical foundations of chemical engineering, 2010, vol. 44, no. 2, pp. 186–191. https://doi.org/10.1134/S0040579510020090
10. Glushko S. I., Bojarinov Ju. G., Software and Systems, 2012, no. 2. pp. 146–148. (In Russ.) https://doi.org/10.15827/0236-235Х
11. Kuznecov S. V., Mathematical models of processes and systems of technical operation of avionics as Markov and semi-Markov processes, Civil Aviation High Technologies, 2015, no. 213 (3), pp. 28–33. (In Russ.)
12. Kozlov A. Ju., Model of the semi-Markov process of functioning of a mobile video surveillance system (with implementation in Matlab), University proceedings. Volga region. Technical sciences, 2016, no. 1 (37), pp. 40–55. (In Russ.)
13. Kopp V. Ya., Kartashov A. L., Zamoryonov M. V., Klyukin V. Yu., St. Petersburg Polytechnic University Journal. Physics and Mathematics, 2016, no. 1 (237), pp. 16–26. (In Russ.) https://doi.org/10.5862/JPM.237.2
14. Pashkovskij A. I., Sovremennye problemy nauki i obrazovanija, 2014, no. 6, available at: http://science-education.ru/ru/article/view?id=16495(accessed:17.03.2021).
15. Tikhonov V. I., Mironov M. A., Markovskie processi [Markov processes], Moscow, Soviet Radio Publ., 1977, 488 p. (In Russ.)
16. Kharlamov B. P., Nepreryvnye polumarkovskie processi [Continuous semi-Markov processes], St. Petersburg, Sciense Publ., 2001, 431 p. (In Russ.)
17. Belyaev Yu. K., Bogatyrev V. A., Bolotin V. V., et al., Nadyozhnost’ tekhnicheskih sistem. [Reliability of technical systems], ed. I. A. Ushakov, Moscow, Radio and communications Publ., 1985, 608 p. (In Russ.)
18. Bykadorov A. K., Kul’bak L. I., Lavrinenko V. Yu. et al., Osnovy funkcionirovaniya radioelektronnoj apparatury [Fundamentals of the functioning of electronic equipment], ed. V. Ju. Lavrinenko, Moscow, Hight School Publ., 1978, 320 p. (In Russ.)
19. Richard E. Barlow, Frank Proschan, Statistical theorу of reliabilitу and life testing: probabilitу models, Holt, Rinehart and Winston, 1975.
20.
Review
For citations:
Mishchenko V.I., Kravtsov A.N., Mamleev T.F. Semi-Markov model of the functioning of redundant measuring instruments, taking into account the frequency of verification. Izmeritel`naya Tekhnika. 2021;(4):22-27. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-4-22-27