

The cosmological distances scale. Part 16: Hubble dipole
https://doi.org/10.32446/0368-1025it.2023-6-4-12
Abstract
In 2007, important events took place in cosmology. The reason for the discrepancy in the estimates of the Hubble constant was established, the galactic polar redshift anisotropy in the spectra of extragalactic sources was indicated, a сold spot of microwave background radiation was detected and so-called extraordinary evidence of the presence of acceleration of the expansion of the Universe was obtained. This evidence is based on the analysis of data on SN Ia type supernovae belonging to the Deep and Ultra Deep Hubble fields. A chain of results is described that led to an alternative hypothesis – the acceleration of mass flows of galaxies under the influence of gravitational dipoles of large-scale heterogeneity of the Universe in the form of pairs of giant void (super void) and massive super cluster of galaxies or attractor on opposite parts of the celestial sphere. The results of the analysis by tests for the inadequacy of the Friedman-Robertson-Walker isotropic model of the calibration function of the redshift scale of cosmological distances adopted in these extraordinary proofs are presented. Structural changes and rank inversions of the isotropic model are interpreted as signs of the action of gravitational dipoles due to the existence of a more accurate anisotropic model of the calibration function of the redshift cosmological distance scale. This hypothesis is an alternative to the hypothesis about the acceleration of the expansion of the Universe. It is shown that the Deep and Ultra Deep Hubble fields are a gravitational dipole – Hubble dipole.
About the Author
S. F. LevinRussian Federation
Sergey F. Levin
Moscow
References
1. McClure M. L., Dyer C. C. New Astronomy, 2007, vol. 12, рp. 533–555. https://doi.org/10.1016/j.newast.2007.03.005
2. Schwarz D. J., Weinhorst B. Astronomy & Astrophysics, 2007, vol. 474, no. 3, pp. 717–724. https://doi.org/10.1051/0004-6361:20077998
3. National Radio Astronomy Observatory: Astronomers Find Enormous Hole in the Universe (press-relies). 23 Aug 2007, available at: https://www.nrao.edu/pr/2007/coldspot/ (accessed: 29.05.2023).
4. Riess A. G. et al. Astrophysical Journal, 2007, vol. 659, рр. 98–121. https://doi.org/10.1086/510378
5. Riess A. G. Rev. Mod. Phys. 2012, vol. 84, 1165. https://doi.org/10.1103/RevModPhys.84.1165
6. Riess A. G. et al. Astronomical Journal, 1998, vol. 116, pp. 1009–1038. https://doi.org/10.1086/300499
7. Perlmutter S. et al. Astrophysical Journal, 1999, vol. 517, pp. 565–586. https://doi.org/10.1086/307221
8. Levin S. F. Abstracts of Papers X Russian Gravitation Conference “Teoreticheskie i eksperimental’nye problemy obshchej teorii otnositel’nosti i gravitacii”, Moscow, RGO Publ., 1999, р. 245. (In Russ.)]
9. Levin S. F. On spatial anisotropy of red shift in spectrums of ungalaxy sources. Physical Interpretations of relativity Theory. Proc. of XV International Scientific Meeting PIRT-2009, Moscow, 6–9 July, 2009, Moscow, BMSTU, 2009, рр. 234–240. (In Russ.)
10. Levin S. F. Identification of red shift anisotropy on the basis of the exact decision of Mattig equation. Abstracts of reports VI International Meeting “Finsler Extensions of Relativity Theory”, Moscow, Fryazino, Russia, 1–7 November 2010, Moscow, BMSTU – RIHSGP, 2010.
11. Planck Collaboration. Planck 2018 results. I. Overview and the cosmological legacy of Planck [astro-ph.CO] (3 Dec 2019). https://doi.org/10.1051/0004-6361/201833880
12. Levin S. Kontrol’no-izmeritel’nyje pribory i sistemy, 2010, no. 2, pp. 35–37. (In Russ)]
13. Levin S., Kontrol’no-izmeritel’nyje pribory i sistemy, 2012, no. 5, pp. 36– (In Russ.)
14. Levin S. F. Measurement Techniques, 2013, vol. 56, no. 3, pp. 217–222 https://doi.org/10.1007/s11018-013-0182-5
15. Levin S. F. Photometric scale of cosmological distances: Anisotropy and nonlinearity, isotropy and zero-point. Physical Interpretation of Relativity Theory. Proceedings of International Meeting PIRT-2013, Moscow, 1–4 July 2013, Eds. M. C. Duffy et al. Moscow, BMSTU, 2013, рр. 210–219.
16. Levin S. F. Measurement Techniques, 2014, vol. 57, no. 4, pp. 378–384. https://doi.org/10.1007/s11018-014-0464-6
17. Horvath I., Hakkila J., Bagoly Z. 7th Huntsville GammaRay Burst Symposium, GRB 2013: paper 33 in eConf Proceedings C1304143. https://doi.org/10.48550/arXiv.1311.1104
18. Keenan R. C., Barger A. J., Cowie L. L. Astrophysical Journal, 2013, vol. 775, no. 1, 62. https://doi.org/10.1088/0004-637X/ 775/1/62
19. Levin S. F. Measurement Techniques, 2018, vol. 61, no. 11, рр. 1057–1065. https://doi.org/10.1007/s11018-019-01549-6
20. Zehavi I., Riess A. G., Kirshner R. P., Dekel A. Astrophysical Journal, 1998, vol. 503(2), 483. https://doi.org/10.1086/306015
21. Planck Collaboration. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth [astro-ph. CO] (26 May 2016). https://doi.org/10.48550/arXiv.1605.02985
22. Riess A. G. et al. Astrophysical Journal, 2016, vol. 826, 56. https://doi.org/10.3847/0004-637X/826/1/56
23. Beaton R. L., Freedman W. L., Madore B. F. et al. Astrophysical Journal, 2016, vol. 832, no. 2, 210. https://doi.org/10.3847/0004-637X/832/2/210
24. Freedman W. L. Cosmology and Nongalactic Astrophysics [astro-ph.CO] (13 Jul 2017). https://doi.org/10.48550/arXiv.1706.02739
25. Hoffman, Y., Pomarède, D., Tully, R. et al. Nature Astronomy, 2017, vol. 1, 0036. https://doi.org/10.1038/s41550-016-0036
26. Courtois H. M., Tully R. B., Racah Y. H., Pomarede D., Graziani R., Dupuy A. Cosmology and Nongalactic Astrophysics [astroph.CO] (24 Aug 2017). https://doi.org/10.48550/arXiv.1708.07547
27. Aghanim N. et al. Cosmology and Nongalactic Astrophysics, [astro-ph.CO] (3 Dec 2019). https://doi.org/10.48550/arXiv.1807.06205
28. Levin S. F. Measurement Techniques, 2021, vol. 63, no. 11, pp. 849–855. https://doi.org/10.1007/s11018-021-01874-9
29. Riess A. G. et al. Astrophysical Journal, 2004, vol. 607, рр. 665–687. https://doi.org/10.1086/383612
30. Levin S. F. Measurement Techniques, 2019, vol. 62, no. 1, рр. 7–15. https://doi.org/10.1007/s11018-019-01578-1
31. Perlmutter S. Rev. Mod. Phys. 2012, vol. 84, 1127. https://doi.org/10.1103/REVMODPHYS.84.1127
32. Levin S. F. Izmeritel’naya Tekhnika, 2023, no. 3, pp. 10–15. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-3-10-15
33. Levin S. F. Giperkomplexnye chisla v geomtrii i physike, 2011, vol. 8, no. 1(15), pp. 70–101. (In Russ.) https://elibrary.ru/phgyvb
34. Levin S. F. Measurement Techniques, 2023, vol. 65, no. 10, pp. 712–719. https://doi.org/10.1007/s11018-023-02143-7
35. Kovács A. et al. Monthly Notices of the Royal Astronomical Society, 2022, vol. 510, no. 1, pp. 216–229. https://doi.org/10.1093/mnras/stab3309
36. Krakowski T., Małek K., Bilicki M., Pollo A., Kurcz A., Krupa M. Astronomy & Astrophysics, 2016, vol. 596, A39. https://doi.org/10.1051/0004-6361/201629165
37. Reisenegger A., Quintana H., Proust D., Slezak E. The ESO Messenger, 2002, no. 107, pp. 18–23, available at: https://www.eso. org/sci/publications/messenger/toc.html?v=107&m=Mar&y=02 (accessed: 25.04.2023).
38. Burns J. O., Moody J. W., Brody J. P., Batusky D. J. Astrophysical Journal, 1988, vol. 335, pp. 542–551. https://doi.org/10.1086/166948
39. Levin S. F. Izmeritel’naya Tekhnika, 2023, no. 2, pp. 4–11. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-2-4-11
40. Levin S. F. Optimal’naya interpolyacionnaya fil’traciya statisticheskih harakteristik sluchajnyh funkcij v determinirovannoj versii metoda MonteKarlo i zakon krasnogo smeshcheniya. Moscow, AN SSSR, Nauchnyj sovet po kompleksnoj probleme “Kibernetika”, 1980. 56 p. (In Russ.)
41. Miln E. A. Relativity, gravitational and world structure, Oxford, Clarendon Press, 1935, 365 p.
42. Dirac P. The cosmological constants, Nature, 1937, vol. 139, p. 323.
43. Treder H.-J. Die Relativität der Trägheit, Berlin, Academie-Verlag, 1972, 119 s. (In German) https://doi.org/10.1515/9783112582541
44. Burbidge G., Burbidge M. Quasi-stellar objects, San Francisco, London, W. H. Freeman and Company, 1967, 235 p.
45. Synge J. L. Relativity: The General theory, Amsterdam, North-Holland Publishing company, 1960, 505 p.
46. Levin S. F., Lisenkov A. N., Sen`ko O. V., Xarat`yan E. I. Sistema metrologicheskogo soprovozhdeniya staticheskix izmeritel`ny`x zadach “MMK-stat M”. Rukovodstvo pol`zovatelya, Moscow, Gosstandart RF, VC RAN Publ., 1998, 32 p. (In Russ.)
47. Levin S. F. Kontrol’no-izmeritel’nye pribory i sistemy, 2009, no. 6, pp. 36–37. (In Russ.)
48. Levin S. F. Kontrol’no-izmeritel’nye pribory i sistemy, 2010, no. 1, pp. 35–36. (In Russ.)
49. Levin S. F. Kontrol’no-izmeritel’nye pribory i sistemy, 2010, no. 2, pp. 36–37. (In Russ.)
50. Lomonosov M. V. O tyazhesti tel i ob izvechnosti pervichnogo dvizheniya, available at: http://lomonosov.niv.ru/lomonosov/nauka/po-fizike-i-himii-1747-1752/science-9.htm (accessed: 22.05.2023). (In Latina, in Russ.)
Review
For citations:
Levin S.F. The cosmological distances scale. Part 16: Hubble dipole. Izmeritel`naya Tekhnika. 2023;(6):4-12. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-6-4-12