

State primary standard of ellipsometric angles GET 186-2017
https://doi.org/10.32446/0368-1025it.2020-8-3-7
Abstract
Paper describes the structure, principle of work and metrological characteristics of the State primary standard of ellipsometric angles units GET 186-2017, which provides measurement of the two-dimensional spatial distribution of ellipsometric angles. The GET 186-2017 includes a spectral ellipsometer equipped with a two-coordinate table for measurements on a grid of 10×10 points, and an interference profilometer which measures a two-dimensional map of deviations from 90° normal to the surface of the object. At scan points where the normal deviation exceeds 0.01° there are no measurements. Measurement of the two-dimensional spatial distribution of ellipsometric angles allows restoring the spatial distribution of the thickness and complex refractive index of coatings over the area. GET 186-2017 ensures the uniformity of measurements in priority areas of science and technology, such as microelectronics, optics, instrument making. The main consumers of GET 186-2017 are organizations involved in the development of new products of microelectronics, solar cells, optics, in particular laser gyroscopes. Such products includes ordered multilayer structures deposited on substrates, which are controlled using various types of ellipsometers, including image ellipsometers.
About the Authors
G. N. VishnyakovRussian Federation
Gennady N. Vishnyakov
Moscow
G. G. Levin
Russian Federation
Gennady G. Levin
Moscow
V. L. Minaev
Russian Federation
Vladimir L. Minaev
Moscow
References
1. Ohlídal I., Vohánka J., Buršíková V., Franta D., and Čermák M., Opt. Express, 2020, vol. 28, no. 1, pp. 160–174. https://doi.org/10.1364/OE.28.000160
2. Nazarov A., Ney M, and Abdulhalim I., Opt. Express, 2020, vol. 28, no. 7, pp. 9288–9309. https://doi.org/10.1364/OE.28.009288
3. Dembele V., Jin M., Choi I., Chegal W., and Kim D., Opt. Express, 2018, vol. 26, no 2, pp. 1333–1341. https://doi.org/10.1364/OE.26.001333
4. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, New York, 1979.
5. Rjanov A.V., Svitashev K. K., Semenenko A. I., Semenenko L. V., Sokolov V. K., Osnovy ellipsometrii, Novosibirsk, Nauka Publ., 1978. 424 p. (in Russian).
6. Nestler P., Helm C. A., Opt. Express, 2017, vol. 25, no. 22, pp. 27077–27085. https://doi.org/10.1364/OE.25.027077
7. Yun Y. H., Joo K.-N., Opt. Express, 2018, vol. 26, no. 26, pp. 34396–34411. https://doi.org/10.1364/OE.26.034396
8. Asinovski L., Beaglehole D., Clarkson M. T., Physica status solidi (a), 2008, vol. 205, no. 4, pp. 764–771. https://doi.org/10.1002/pssa.200777855
9. Li G., Gu L., Hu J., Zhu L., Zeng A., and Huang H., Chin. Opt. Lett., 2019, vol. 17, no. 1, pp. 011201.
10. Jin L., Iizuka Y., Iwao T., Kondoh E., Uehara M., and Gelloz B., Appl. Opt., 2019, vol. 58, no. 33, pp. 9224–9229. https://doi.org/10.1364/AO.58.009224
11. Shan Y., Hu G., Gu L., He H., Zeng A., Zhao Y., and Sytchkova A., Appl. Opt., 2017, vol. 56, no. 28, pp. 7898–7904. https://doi.org/10.1364/AO.56.007898
12. Vishnyakov G. N., Levin G. G., Minaev V. L., and Tselmina I. Y., J. Opt. Technol., 2013, vol. 80, no 5, pp. 316–320. https://doi.org/10.1364/JOT.80.000316
13. Vishnyakov G., Levin G., Minaev V., Nekrasov N., Appl. Opt., 2015, vol. 54, no 15, pp. 4797–4804. https://doi.org/10.1364/AO.54.004797
Review
For citations:
Vishnyakov G.N., Levin G.G., Minaev V.L. State primary standard of ellipsometric angles GET 186-2017. Izmeritel`naya Tekhnika. 2020;(8):3-7. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-8-3-7