

Inadequacy for mathematical models of measurement objects and risk calculations according to ISO/IEC 17025-2019
https://doi.org/10.32446/0368-1025it.2020-7-13-21
Abstract
The problem of inadequacy of mathematical models of measurement objects is considered in connection with the problem of “definitional uncertainty of measurement” and the need for risk management in accordance with GOST ISO/IEC 17025-2019 “General requirements for the competence of testing and calibration laboratories”. The prehistory of the problem is described: from the formation of moment and compositional approaches to estimating accuracy to the introduction of a special term “inadequacy error for mathematical model of measurement object”. The negative impact of hopelessness of conceptual and terminological transformations in metrology and critical contradiction of the applicability estimates for “statistical methods” of GOST R ISO/IEC 31010-2011 “Risk management – Risk assessment techniques” and “Guide to the expression of uncertainty in measurement” is noted. It is shown that taking into account the inadequacy of probabilistic models in risk calculations is a necessary condition for results reliability.
About the Author
S. F. LevinRussian Federation
Sergey F. Levin
Moscow
References
1. Levin S. F., Measurement Techniques, 2007, vol. 50, no. 9, pp. 921–928. https://doi.org/10.1007/s11018-007-0173-5
2. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2000, no. 3, pp. 21–24 (in Russian).
3. Elyasberg P. E., Izmeritelnaya informaciya: Skolko ee nuzhno? Kak ee obrabatyvat? Moscow, Nauka Publ., 1983 (in Russian).
4. Hampel F. R. et al., Robust Statistics, New York: John Wiley & Sons, 1986.
5. Levin S. F., Optimalnaya interpolyacionnaya fi ltraciya statisticheskih harakteristik sluchajnyh funkcij v determinirovannoj versii metoda Monte-Karlo i zakon krasnogo smeshcheniya, Moscow, AN SSSR Publ., 1980 (in Russian).
6. Voprosy kibernetiki VK-94. Statisticheskie metody v teorii obespecheniya ekspluatacii, Moscow, AN SSSR Publ., 1982.
7. Ivahnenko A. G., Induktivnyj metod samoorganizacii modelej slozhnyh system, Kiev, Naukova dumka Publ., 1982 (in Russian).
8. Quenouille M. H., Journal of Royal Statistical Society, 1949, B 11, pp. 68–84.
9. Levin S. F, Metodicheskie rekomendacii. Garantirovannost programm obespecheniya ekspluatacii tekhniki, Kiev, Znanie Publ., 1989 (in Russian).
10. Levin S. F., Measurement Techniques, 1995, vol. 38, no. 7, pp. 732–743. https://doi.org/10.1007/BF02616256
11. Levin S. F., Measurement Techniques, 1991, vol. 34, no. 12, pp. 1221–1225. https://doi.org/10.1007/BF00982559
12. International vocabulary of metrology – Basic and general concepts and associated terms (VIM) 3rd edition, available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf (accessed: 10/01/2020).
13. Levin S. F., Partnery i konkurenty, 2001, no. 1, pp. 13–25 (in Russian).
14. Fizicheskaya enciklopediya v 5 tom. Vol. 3, Moscow, Bol’shaya Rossijskaya enciklopediya Publ., 1992 (in Russian).
15. Levin S. F., Measurement Techniques, 2020, vol. 62, no. 11, pp. 933–944. https://doi.org/10.1007/s11018-020-01716-0
16. Adler Yu. P., Granovskij Yu.V., Markova E.V., Teoriya eksperimenta: proshloe, nastoyashchee, budushchee, Moscow, Znanie Publ., 1982 (in Russian).
17. Levin S. F., Izmeritelnaya tekhnika, 2008, no. 12, pp. 61–64 (in Russian).
18. Isaev L. K., Mardin V. V., Russko-anglo-francuzskoispanskij slovar osnovnyh i obshchih terminov v metrologii, Moscow, Izdatelstvo standartov Publ., 1998 (in Russian).
19. Sheff e H., The Analysis of Variance, New York, John Wiley & Sons, 1958.
20. Levin S. F., Glavnyj metrolog, 2003, no. 3, pp. 5–7 (in Russian).
21. Levin S. F., Glavnyj metrolog, 2003, no. 4, pp. 44–54 (in Russian).
22. Levin S. F., Glavnyj metrolog, 2004, no. 1, pp. 44–53 (in Russian).
23. Levin S. F., Glavnyj metrolog, 2004, no. 3, pp. 52–56 (in Russian).
24. Levin S. F., Glavnyj metrolog, 2005, no. 1, pp. 19–26 (in Russian).
25. Levin S. F., Glavnyj metrolog, 2005, no. 3, pp. 20–28 (in Russian).
26. Koks M., Harris P., Measurement Techniques, 2005, vol. 48, no. 4, pp.336–345. https://doi.org/10.1007/s11018-005-0146-5
27. Ehrlich C., Dybkaer R., Wöger W., OIML Bulletin, April 2007, pp. 23–35.
28. Erlik Ch., Dibkajer R., Vyoger V., Glavnyj metrolog, 2016, no. 1, pp. 11–30 (in Russian).
29. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2017, no. 1, pp. 35–38 (in Russian).
30. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2017, no. 2, pp. 35–38 (in Russian).
31. Levin S. F., Zakonodatelnaya i prikladnaya metrologiya, 2016, no. 5, pp. 31–44 (in Russian).
32. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2018, no. 4, pp. 32–36 (in Russian).
33. Levin S. F., Izmeritelnaya tekhnika, 2019, no. 7, pp. 14–22 (in Russian).
34. Guide to the Expression of Uncertainty in Measurement (GUM). Sec. Ed. Geneva, BIMP, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 1995.
35. Levin S.F., Zakonodatelnaya i prikladnaya metrologiya, 2017, no. 3, pp. 18–25 (in Russian).
36. Razvitie deyatelnosti po kalibrovke sredstv izmerenij. Doklad rabochej gruppy, Moscow, RSPP Publ., 2016 (in Russian)
37. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2006, no. 3, pp. 23–24 (in Russian).
38. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2006, no. 4, pp. 32–36 (in Russian).
39. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2006, no. 5, pp. 33–34 (in Russian).
40. Levin S. F., Zakonodatelnaya i prikladnaya metrologiya, 2016, no. 4, pp. 27–33 (in Russian).
41. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2018, no. 3, pp. 8–11 (in Russian).
42. Levin S. F., Kontrolno-izmeritelnye pribory i sistemy, 2018, no. 1, pp. 35–38 (in Russian).
43. Bol’shev L. N., Smirnov N. V., Tablicy matematicheskojstatistiki. Izd. 3, Moscow, Nauka Publ., 1983 (in Russian).
44. Selivanov M. N., Fridman A. E., Kudryashova Zh. F., Kachestvo izmerenij, Leningrad, Lenizdat Publ., 1987 (in Russian).
45. Novickij P. V., Zograf I. A., Ocenka pogreshnostej rezul’tatov izmerenij, Leningrad, Energoatomizdat Publ., 1985 (in Russian).
46. Levin S. F. Measurement Techniques, 2018, vol. 61, no. 9, pp. 863–871. https://doi.org/10.1007/s11018-018-1516-0
Review
For citations:
Levin S.F. Inadequacy for mathematical models of measurement objects and risk calculations according to ISO/IEC 17025-2019. Izmeritel`naya Tekhnika. 2020;(7):13-21. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-7-13-21