Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Non-stationary dynamic system characteristics recovery from three test signals

https://doi.org/10.32446/0368-1025it.2020-3-9-15

Abstract

Algorithms of exact restoration in an analytical form of dynamic characteristics of non-stationary dynamic systems are constructed. Non-stationary continuous dynamical systems modeled by Volterra integral equations of the first kind and nonstationary discrete dynamical systems modeled by discrete analogues of Volterra integral equations of the first kind are considered. The article consists of an introduction and three sections: 1) The exact restoration of the dynamic characteristics of continuous systems, 2) The restoration of the transition characteristics of discrete systems, 3) Conclusions. The introduction provides a statement of the problem and provides an overview of dynamical systems for which algorithms for exact reconstruction in an analytical form of the impulse response (in the case of continuous systems) and the transition characteristic (in the case of discrete systems) are constructed. In the first section, the algorithm is constructed for the exact reconstruction of the impulse response of an non-stationary continuous dynamic system from three interconnected input signals. The first signal may be arbitrary, the second and third signals are associated with the first signal by integral operator. The exact formula for the Laplace transform of the impulse response, represented by an algebraic expression from the Laplace transform of the system output signals, is given. A model example illustrating the effectiveness of the algorithm is given. The practical application of the presented algorithm is discussed. In the second section, an algorithm is constructed for the exact reconstruction of the transition response of a nonstationary discrete dynamical system from three input signals that are interconnected. The first signal may be arbitrary, the second and third signals are associated with the first summing operator. The exact formula of the Z-transform of the transition characteristic is presented, which is represented by an algebraic expression from the Z-transform of the system output signals. A model example is given. The “Conclusions” section provides a summary of the results presented in the article and describes the dynamic systems to which the proposed algorithms can be extended.

About the Authors

I. V. Boikov
Penza State University
Russian Federation

Ilia V. Boikov

Penza



N. P. Krivulin
Penza State University
Russian Federation

Nikolay P. Krivulin

Penza



References

1. Pupkov K. A., Egupov N. D., Barkin A. I., Voronov E. M., Konkov V. G., Kornyushin Yu. P., Milov L. T., Myshlyaev Yu. I., Rybin V. M., Sivtsov V. I., Trofi mov A. I., Faldin N. V., Shevyakov O. V. Metody klassicheskoi i sovremennoi teorii avtoma-ticheskogo upravleniy. V. 1. Matematicheskie modeli, dinamicheskie kharakteristiki i analiz sistem avtomaticheskogo upravlinija, Moscow, Izdatelstvo Moskovskogo Gosudarstvennogo Technicheskogo Universiteta imeni N. E. Baumana Publ., 2004, 656 p. (in Russian).

2. Pupkov K. A., Egupov N. D., Trofi mov A. I. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniy. V. 2. Statisticheskay dinamika I identifi katsiy sistem avtomaticheskogo upravliniy, Moscow, Izdatelstvo Moskovskogo Gosudarstvennogo Technicheskogo Universiteta imeni N. E. Baumana Publ., 2004, 640 p. (in Russian).

3. Deutsch A. M. Metody identifi katsii dinamicheskich ob’ektov, Moscow, Energiy Publ., 1979, 240 p. (in Russian).

4. Granovsky V. A. Dinamitheskie izmereniy, Leningrad, Energoatomizdat Publ., 1984, 220 p. (in Russian).

5. Ljung L. System Identifi cation. Theory for the User. 2nd ed. PTR Prentice Hall, Upper Saddle River, 1999, 609 p.

6. Tsypkin Y. Z. Informatsionnay teoriy identifi katsii, Moscow, Nauka Publ., 1995, 336 p. (in Russian).

7. Boikov I. V., Krivulin N. P., Analiticheskie I chislennie metody identifi katsii dinamicheskikh sistem, Penza, Penzenskii Gosudarstvenniy Universitet Publ., 2016, 398 p. (in Russian).

8. Boikov I. V., Measurement Techniques, 1991, vol. 34, no. 1, pp. 12–15. DOI:10.1007/BF00978282

9. Boikov I. V., Measurement Techniques, 1994, vol. 37, no. 9, pp. 988–993. DOI:10.1007/BF00980123

10. Boikov I. V., Measurement Techniques, 1995, vol. 38, no. 4, pp. 381–383. DOI:10.1007/BF00976428

11. Boikov I. V., Krivulin N. P., Measurement Techniques, 2013, vol. 56, no. 4, pp. 359–367. DOI:10.1007/s11018-013-0210-5

12. Sidorov D. N. Metody analiza integralnikh dinamicheskikh modelei: teoriy I prilogeniy, Irkutsk, Irkutskii Gosudarstvenniy Universitet Publ., 2013, 293 p. (in Russian).

13. Doyle F. J., Pearson R. K., Ogunnaike B. A., Identifi cation and Control Using Volterra Models, Springer-Verlag, 2012. 314 p.

14. Sizikov V. S., Matematicheskie metody obrabotki resultatov izmerenii, Sankt Peterburg, Politekhnika Publ., 2001, 240 p. (in Russian).

15. Vatulyan A. O., Obratnie zadachi v mekhanike deformiruemogo tela, Moscow, FIZMATLIT Publ., 2007, 223 p. (in Russian).

16. Kabanikhin S. I., Obratnie I nekorrektnue zadachi, Novosibirsk, Sibirskoe nauchnoe izdatelstvo Publ., 2009, 457 p. (in Russian).

17. Isermann R., Munchof M., Identifi cation of Dynamical Systems: An Introduction with Applications, Springer-Verlag, 2011, 711 p.

18. Hasanov Hasanoğlu A., Romanov V. G., Introduction to inverse problems for diff erential equations, Springer International Publishing AG, 2017, 261 p.

19. Boikov I. V., Krivulin N. P., Metrologiy, 2012, no. 8, pp. 3–14.

20. Krylov V. I., Skoblya N. S., Metody priblizennogo preobrazovaniy Furie I obrasheniy preobrazovaniy Laplasa (spravochnay kniga), Moscow, Nauka Publ., 1974, 224 p. (in Russian).

21. Shcherbakov M. A., University proceedings, Volga region, Technical sciences, 2011, no. 4 (20), pp. 43–56 (in Russian).


Review

For citations:


Boikov I.V., Krivulin N.P. Non-stationary dynamic system characteristics recovery from three test signals. Izmeritel`naya Tekhnika. 2020;(3):9-15. (In Russ.) https://doi.org/10.32446/0368-1025it.2020-3-9-15

Views: 87


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)