

Constructing control charts for a process with Rayleigh distributed output
https://doi.org/10.32446/0368-1025it.2022-11-17-24
Abstract
Control charts are the important tool of the statistical process control that is intended to achieve the quality of product. Currents standards describe construction of control charts for processes with normally distributed output. The two-parameter generalization of Rayleigh distribution was found in some cases, particularly for internal and external cylindrical surfaces diameters under a defi nite locating and processing method. This article explains constructing Shewhart control charts for monitoring variation and shift of the process having the appointed distribution of quality characteristic. The results of the previous researches of the test statistics distributions were used. The quantiles of the distributions and other coeffi cients used for control chats constructing are presented. The example of the control charts construction is given. The results are applicable in statistical process control in quality management systems in addition to the standardized statistical methods, which are oriented to normally distributed data.
Keywords
About the Authors
S. N. GrigorievRussian Federation
Sergey N. Grigoriev
Moscow
P. N. Emelianov
Russian Federation
Petr N. Emelianov
Moscow
D. A. Masterenko
Russian Federation
Dmitry A. Masterenko
Moscow
S. E. Ped
Russian Federation
Sergey E. Ped
Moscow
References
1. Teleshevsky V. I., Measuring informatics in mechanical engineering, Vestnik of MSTU “STANKIN”, 2008, no. 1. pp. 33– 38. (In Russ.)
2. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N., Measurement Techniques, 2013, vol. 55, no. 11, рр. 1311–1315. https://doi.org/10.1007/s11018-013-0126-0
3. Grigoriev S. N., Teleshevskii V. I., Measurement Techniques, 2011, vol. 54, no. 7, pp. 744–749. https://doi.org/10.1007/s11018-011-9798-5
4. Leun V. I., Nikolaeva E. V., Tignibidin A. V., The trend in the development of theory and practice of creating control devices to improve the accuracy and productivity of grinding operations of parts and tools in technological processes of mechanical engineering, instrumentation and tool production, Dynamics of systems, mechanisms and machines, 2012, no. 2, pp. 251–254. (In Russ.)
5. Grigoriev S. N., Sinopalnikov V. A., Tereshin M. V., Gurin V. D., Measurement Techniques, 2012, vol. 55, no. 5, pp. 555–558. https://doi.org/10.1007/s11018-012-9999-6
6. Deming W. E., Overcoming the crisis: A new paradigm of managing people, systems and processes, Cambridge, MA, MIT Center for Advanced Engineering Study, 1982.
7. Lapidus V. A., Sistema Shuharta [Shewhart’s System], N. Novgorod, Priority Publ., 2004, 65 p. (In Russ.)
8. Adler Yu. P., Shper V. L., Prakticheskoe rukovodstvo po statisticheskomu upravleniyu processami [Practical guide to statistical process management], Moscow, Alpina Publisher, 2019, 320 p. (In Russ.)
9. Wheeler D. J., Chambers D. S., Understanding Statistical Process Control, Addison-Wesley, 1990, 310 p.
10. Grigoriev S. N., Emelyanov P.N., Masterenko D. A., Ped’ S. E., Sampling by variables for Rayleigh distributed lots, Izmeritel’naya Tekhnika, 2022, no. 6, pp. 28–35. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-28-35
11. Grigoriev S. N., Emelyanov P.N., Masterenko D. A., Ped’ S. E., Two-parameters sampling on the base of measurements of Rayleigh distributed parts dimensions, Izmeritel’naya Tekhnika, 2022, no. 9, pp. 24– 32. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-24-32
12. Rozno M. I., Statisticheskij kontrol’ kachestva produkcii po al’ternativnomu priznaku pri izmenyonnom dopuske (metod AKUD) [Statistical quality control of products on an alternative basis with a modifi ed tolerance (AKUD method)], Reliability and quality control, 1992, no. 2, pp. 44–52. (In Russ.)
13. Steiner S. H., Geyer P. L., Wesolowsky G. O., International Journal of Production Research, 1994, vol. 32, no. 1, pp. 75–91. https://doi.org/10.1080/00207549408956917
14. Steiner S. H., Geyer P. L., Wesolowsky G. O., Quality and Reliability Engineering International, 1996, vol. 12, no. 5, pp. 345–353. https://doi.org/10.1002/(SICI)1099-1638(199609)12:5<345:AIDQRE11>3.0.CO;2-M
15. Rozno M. I., Regulation of processes based on data on an alternative feature by a narrowed tolerance, Methods of quality management, 2001, no. 12, pp. 27–33. (In Russ.)
16. Grigorovich V. G., Kozlova N. O., Yudin S. V., Metod ocenki centra gruppirovaniya razmerov v usloviyah proizvodstva na ARL [Method of estimating the size grouping center in production conditions at ARL], Avtomatizaciya tekhnologicheskih processov v mashinostroenii, Volgograd State Technical University, 1995, pp. 197–202. (In Russ.)
17. Grigorovich V. G., Kozlova N. O., Yudin S. V., Informacionno-statisticheskie metody regulirovaniya tekhnologicheskih processov [Information and statistical methods of regulation of technological processes], Forging and stamping production, 2000, no. 9, pp. 27–29. (In Russ.)
18. Masterenko D. A., Comparison of methods for regulating processes based on measuring control information on an alternative basis by the narrowed tolerance, Vestnik of MSTU “STANKIN”, 2017, no. 3, pp. 74–79. (In Russ.)
19. Masterenko D. A., Metel A. S., Mechanics & Industry, 2017, vol. 18, no. 7, 702. https://doi.org/10.1051/meca/2017054
20. Raza S. M., Butt M. M., Siddiqi A. F., Shewhart Control Charts for Rayleigh Distribution in the Presence of Type I Censored Data, Journal of ISOSS, 2016, vol. 2(2), pp. 210–217.
21. Orlov A. I., Prikladnaya statistika [Applied statistics], Moscow, Examen Publ., 2004, 483 p. (In Russ.)
22. Kozlov M. V., Prohorov A. V., Vvedenie v matematicheskujy statistiku [Introduction to Mathematical Statistics], Moscow, MGU Publ., 1987, 264 p. (In Russ.)
23. Rozanov Yu. A., Teoriya veroyatnostej, sluchajnye processy i matematicheskaya statistika [Probability theory, random processes and mathematical statistics], Moscow, Nauka Publ., 1985, 320 p. (In Russ.)
Review
For citations:
Grigoriev S.N., Emelianov P.N., Masterenko D.A., Ped S.E. Constructing control charts for a process with Rayleigh distributed output. Izmeritel`naya Tekhnika. 2022;(11):17-24. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-11-17-24