

Modifi cation of a nonparametric method for testing the hypothesis of distributions of random variables
https://doi.org/10.32446/0368-1025it.2023-4-11-17
Abstract
To improve the computational effi ciency of solving the problem of testing the hypothesis about the distributions of random variables, a modifi ed testing technique is proposed. The technique is based on determining the maximum discrepancy between the estimates of the distribution functions of the compared random variables and further calculation and analysis of confi dence intervals for the found values of the distribution functions. The hypothesis about the identity of the distribution laws is confi rmed if the obtained confi dence intervals at a given level of signifi cance intersect. Based on the results of computational experiments, the Kolmogorov-Smirnov, Pearson criteria are compared using the formulas for sampling the intervals of values of random variables of Sturges, Heinhold-Gaede, and the modifi ed method. Paired combinations of random variable distribution laws are considered: uniform, Gaussian, lognormal and power law. Competence conditions for the compared criteria for testing hypotheses about the distributions of random variables are established. The modifi ed method allows its generalization to test the hypothesis of distributions of multidimensional random variables. In contrast to the Pearson criterion, the proposed technique allows to bypass the problem of decomposition of the range of values of random variables into multidimensional intervals.
About the Authors
A. V. LapkoRussian Federation
Aleksandr V. Lapko
Krasnoyarsk
V. A. Lapko
Russian Federation
Vasiliy A. Lapko
Krasnoyarsk
References
1. Zenkov I. V., Lapko A. V., Lapko V. A., Kiryushina E. V., Vokin V. N. Computer Optics, 2021, vol. 45, no 5, pp. 767–772. (In Russ.) https://doi.org/10.18287/2412-6179-CO-871
2. Zenkov I. V., Lapko A. V., Lapko V. A., Kiryushina E. V., Vokin V. N., Bakhtina A. V. Computer Optics, 2021, vol. 45. no. 6, pp. 926– 933. (In Russ.) https://doi.org/10.18287/2412-6179-CO-902
3. Lapko A. V., Lapko V. A., Bakhtina A. V. Optoelectronics, Instrumentation and Data Processing, 2022, vol. 57, no. 6, pp. 639–648. https://doi.org/10.3103/S8756699021060078
4. Lapko A. V., Lapko V. A., Bakhtina A. V. Measurement Techniques, 2022, vol. 65, no. 1, pp. 17–23. https://doi.org/10.1007/s11018-022-02043-2
5. Zenkov I. V., Im S. T., Lapko A. V., Lapko V. A., Muzalevsky K. V., Okhotkina E. A., Ruzhechka Z. Z., Haruk V. I., Yuronen Yu. P. Razvitie i primenenie informacionnyh tekhnologij issledovaniya prirodnyh resursov territorij Sibiri na osnove dannyh distancionnogo zondirovaniya [Development and application of information technologies for the study of natural resources of Siberian territories based on remote sensing data], Krasnoyarsk, SibGAU Publ., 2017, 280 p. (In Russ.)
6. Kolmogoroff A. N. Sulla determinazione empirica di una legge di distribuzione, Giornale dell` Istituto Italiano degly Attuari, 1933, vol. 4, no. 1, pp. 83–91. (In Ital.)
7. Bol’shev L. N. Theory of Probability & Its Applications, 1963, vol. 8, no. 2, pp. 129–155. https://doi.org/10.1137/1108012
8. Bol’shev L. N., Smirnov N. V. Tablicy matematicheskoj statistiki [Tables of mathematical statistics], Moscow, Nauka Publ., 1983, 416 p. (In Russ.)
9. Marozzi M. Journal of Nonparametric Statistics, 2009, vol. 21, no. 5, рр. 629–647. https://doi.org/10.1080/10485250902952435
10. Marozzi M. Communications in Statistics Simulation and Computation, 2013, vol. 42, no. 6, рр. 1298–1317. https://doi.org/10.1080/03610918.2012.665546
11. Justel A., Peña D., Zamar R. Statistics & Probability Letters, 1997, vol. 35, no. 3, рр. 251–259. https://doi.org/10.1016/S0167-7152(97)00020-5
12. Peacock J. A. Monthly Notices of the Royal Astronomical Society, 1983, vol. 202, no. 3, рр. 615–627. https://doi.org/10.1093/mnras/202.3.615
13. Gosset E. A three-dimensional extended Kolmogorov-Smirnov test as a useful tool in astronomy. Astronomy and Astrophysics, 1987, vol. 188, no. 1, рр. 258–264.
14. Fasano G., Franceschini A. Monthly Notices of the Royal Astronomical Society, 1987, vol. 225, рр. 155–170. https://doi.org/10.1093/mnras/225.1.155
15. Pugachev V. S. Teoriya veroyatnostej i matematicheskaya statistika [Probability theory and mathematical statistics], Moscow, Fizmatlit Publ., 2002, 496 p. (In Russ.)
16. Lapko A. V., Lapko V. A. Optoelectronics, Instrumentation and Data Processing, 2010, vol. 46, no. 6, pp. 545–550. https://doi.org/10.3103/S8756699011060069
17. Sturgess H. A. Journal of the American Statistical Association, 1926, vol. 21, рр. 65–66. https://doi.org/10.1080/01621459.1926.10502161
18. Heinhold I., Gaede K. W. Ingenieur-Statistik. München, Wien, Springler Verlag, 1964, 352 p. (In German)
19. Lemeshko B. Yu., Chimitova E. V. On the selection of the number of intervals in the criteria of agreement of type χ2. Industrial Laboratory. Diagnostics of Materials, 2003, vol. 69, no. 1, pp. 61–67. (In Russ.)
20. Lemeshko B. Yu., Postovalov S. N. On the dependence of the marginal distributions of Pearson statistics χ2 and the likelihood ratio on the data grouping method. Industrial Laboratory. Diagnostics of Materials, 1998, vol. 64, no. 5, pp. 56–63. (In Russ.)
21. Gmurman V. E. Teoriya veroyatnostej i matematicheskaya statistika [Probability theory and mathematical statistics]. Moscow, Vysshaya shkola Publ., 1999, 479 p. (In Russ.)
22. Petrov Yu. V., Anikin S. N., Yukhno S. A., Modeling of random variables. St. Petersburg, Baltiyskiy gosudarstvennyy tekhnicheskiy universitet Publ., 2020, 90 p. (In Russ.)
Review
For citations:
Lapko A.V., Lapko V.A. Modifi cation of a nonparametric method for testing the hypothesis of distributions of random variables. Izmeritel`naya Tekhnika. 2023;(4):11-17. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-4-11-17