

Modelling of the discharge coeffcient of differential pressure flowmeters by the support vector machine
https://doi.org/10.32446/0368-1025it.2022-4-37-42
Abstract
The article discusses a method for modeling the differential pressure flowmeters of using machine learning methods. In the proposed work, a model in the form of a support vector machine is used as the discharge coefficient of the orifice plate. The paper describes in detail the learning process of the proposed model, and discusses its structure for the discharge coefficient in the form of a support vector machine, provides training parameters. The paper also provides simulation results, both during training and during testing of the model, which confirm the effectiveness of the proposed alternative method of reproducing the discharge coefficient. The authors of the article presented a comparative analysis of the obtained model for the discharge coefficient in the form of a support vector machine with the values of the current Reader-Harris and Gallagher equation. The paper shows that the model of the discharge coefficient in the form of a support vector machine is not inferior in accuracy and efficiency to the current models, and allows improving the systems for measuring the flow rate of liquids and gases. The obtained research results for differential pressure flow measurement systems of gas are relevant, and are of interest for natural gas production, transportation and storage facilities.
About the Authors
Z. A. DayevKazakhstan
Zhanat А. Dayev
Aktobe
G. E. Shopanova
Kazakhstan
Gulzhan E. Shopanova
Aktobe
References
1. Yoder J., Measuring a 1 % gain in a 4,5 billion dollars market, Flow Control, 2008, vol. 6, pp. 42–45.
2. Даев Ж. А. Сравнительный анализ коэффициентов истечения расходомеров переменного перепада давления // Метрология. 2015. № 1. P. 32–36.
3. Reader-Harris M., Orifi ce Plates and Venturi Tubes, Glasgow, Springer International Publishing Switzerland, 2015, 389 p. https://doi.org/10.1007/978-3-319-16880-7
4. Cristancho D. E., Hall K. R., Coy L. A., Iglesias-Silva G. A., Flow Measurement and Instrumentation, 2010, vol. 21, iss. 3, pp. 299–301. https://doi.org/10.1016/j.flowmeasinst.2010.03.003
5. Stolz J. A., Universal Equation for the Calculation of Discharge Coeffi cient of Orifi ce Plates, Proceedings of FLOMEKO 1978, IMEKO-Conference on Flow Measurement of Fluids, Groningen, Netherlands, September 11–15, 1978, Amsterdam, NorthHolland, 1978, pp. 519–534.
6. Reader-Harris M. J., Sattary J. A., Flow Measurement and Instrumentation, 1990, vol. 1, iss. 2, pp. 67–76. https://doi.org/10.1016/0955-5986(90)90031-2
7. Reader-Harris M. J., Sattary J. A., Spearman E. P., The orifi ce plate discharge coeffi cient equation, Progress Report no. PR14, EUEC/17 (EEC005), East Kilbride, Glasgow, National Engineering Laboratory Executive Agency, 1992, 104 p.
8. Reader-Harris M. J., Sattary J. A., Spearman E. P., Flow Measurement and Instrumentation, 1995, vol. 6, iss. 2, pp. 101– 114. https://doi.org/10.1016/0955-5986(94)00001-O
9. Reader-Harris M. J., Forsyth C., BoussouaraT., Flow Measurement and Instrumentation, 2021, vol. 82, 102043. https://doi.org/10.1016/j.flowmeasinst.2021.102043
10. Ahmed E. N., Ghanem A. A., Flow Measurement and Instrumentation, 2020, vol. 73, 101751. https://doi.org/10.1016/j.flowmeasinst.2020.101751
11. Hollingshead C. L., Johnson M. C., Barfuss S. L., Spall R. E., Journal of Petroleum Science and Engineering, 2011, vol. 78, iss. 3–4, pp. 559–566. https://doi.org/10.1016/j.petrol.2011.08.008
12. Dayev Zh. A., Flow Measurement and Instrumentation, 2020, vol. 71, 101674. https://doi.org/10.1016/j.flowmeasinst.2019.101674
13. Dayev Zh., Kairakbaev A. K., Applied Artifi cial Intelligence, 2021, vol. 35, pp. 1128–1146. https://doi.org/10.1080/08839514.2021.1975378
14. Dayev Zh., Kairakbaev A., Yetilmezsoy K., Bahramian M., Sihag P., Kıyan E., Flow Measurement and Instrumentation, 2021, vol. 79, 101913. https://doi.org/10.1016/j.flowmeasinst.2021.101913
15. Dayev Zh. A., Latyshev L. N., Flow Measurement and Instrumentation, 2017, vol. 56, pp. 18–22. https://doi.org/10.1016/j.flowmeasinst.2017.07.001
16. Haykin S. Neural Networks, A Comprehensive Foundation, Prentice Hall, 1999, 864 p.
17. Jarushkina N. G., Osnovy nechetkih i gibridnyh system, Moscow, Finansy i statistika Publ., 2009, 320 p. (In Russ.)
18. Borg D., Suetake M., Brandao D., Flow Measurement and Instrumentation, 2014, vol. 40, pp. 142–148. https://doi.org/10.1016/j.flowmeasinst.2014.09.007
Review
For citations:
Dayev Z.A., Shopanova G.E. Modelling of the discharge coeffcient of differential pressure flowmeters by the support vector machine. Izmeritel`naya Tekhnika. 2022;(4):37-42. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-4-37-42