

Frame micro-optoelectromechanical angular velocity transducer with optical readout units based on the optical tunneling effect
https://doi.org/10.32446/0368-1025it.2022-5-50-55
Abstract
A model of a frame micro-optoelectromechanical angular velocity transducer with electrostatic excitation of primary oscillations is proposed. The transducer includes optical readout units based on the optical tunnel effect, in which precision optical reading of submicrometer movements of the sensing element is implemented. The optical reading unit was experimentally investigatedand the linear region of the function of converting the working gap into optical power was determined. To measure the amplitude of the secondary vibrations of the sensitive element (several hundreds of nanometers), two channels for reading optical signals were used. Values of the parameters of elastic suspensions are found to ensure the secondary movement of the sensitive element in the range of high sensitivity of the optical readout units. The parameters of the proposed transducer and the nonlinearity of the transformation function in the range of measured angular velocities are estimated. The proposed micro-optoelectromechanical transducer can be effectively used for highly sensitive measurement of the angular velocities of moving objects.
About the Authors
V. I. BusurinRussian Federation
Vladimir I. Busurin
Moscow
A. V. Kazaryan
Russian Federation
Alexander V. Kazaryan
Moscow
S. G. Shtek
Russian Federation
Sergey G. Shtek
Moscow
M. A. Zheglov
Russian Federation
Maksim A. Zheglov
Moscow
S. O. Vasetskiy
Russian Federation
Stanislav O. Vasetskiy
Moscow
P. L. Ky
Russian Federation
Phay L. Ky
Moscow
References
1. Kostsov E. G., Optoelectronics, Instrumentation and Data Processing, 2009, vol. 45, no 3, pp. 189–226. https://doi.org/10.3103/S8756699009030017
2. Song W. J., Lee J. G., Kang T., Sung W. T., Lim H. T., Kim Y. K., Design of a gimbal-structured micro gyroscope and signal processing part, Proceedings of ICCAS, 2001, pp. 1266–1269.
3. Yazdi N., Ayazi F., Najafi K., Proceedings IEEE, 1998, vol. 86, no. 8, pp. 1640–1659. https://doi.org/10.1109/5.704269
4. Chi C. Y., Chen T. L., Compensation of imperfections for vibratory gyroscope systems using state observers, Sensors & Transducers, 2009, vol. 6, pp. 128–145.
5. Vyuzhanina E. A., Krishtop V. V., Journal of Instrument Engineering, 2022, vol. 65. (In Russ.) https://doi.org/10.17586/0021-3454-2020-63-9-823-829
6. Xia D., Huang L., Zhao L., Sensors, 2019, no. 19, 2798. https://doi.org/10.3390/s19122798
7. Shen X., Zhao L., Xia D., Micromachines, 2019, vol. 10, no. 4, 264. https://doi.org/10.3390/mi10040264
8. Murashkina T. I., Brostilov S. A., Brostilova T. Ju., Volokonno-opticheskij datchik davlenija na osnove tunnel’nogo jeffekta, Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Tehnicheskie nauki, 2010, no. 4(16), pp. 108–120. (In Russ.)
9. Shvarcburg A. B., Phys.-Usp., 2007, vol. 50, no. 1, pp. 37– 53. https://doi.org/ 10.1070/PU2007v050n01ABEH006148
10. Born M., Wolf E., Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diff raction of Light, 7th edition, Cambridge University Press, 1999. https://doi.org/10.1017/CBO9781139644181
11. Legtenberg R., Groeneveld A. W., Elwenspoek M., Journal of Micromechanics and microengineering, 1996, vol. 6, no. 3, 320. https://doi.org/10.1088/0960-1317/6/3/004
12. Busurin V. I., Korobkov V. V., Fam A. T., Zheglov M. A., Measurement Techniques, 2017, vol. 60, no 6, pp. 558–564. https://doi.org/10.1007/s11018-017-1234-z
Review
For citations:
Busurin V.I., Kazaryan A.V., Shtek S.G., Zheglov M.A., Vasetskiy S.O., Ky P.L. Frame micro-optoelectromechanical angular velocity transducer with optical readout units based on the optical tunneling effect. Izmeritel`naya Tekhnika. 2022;(5):50-55. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-5-50-55