Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Microgravity test complex for mobile and portable optical frequency standards

https://doi.org/10.32446/0368-1025it.2022-3-45-52

Abstract

The questions of application of optical quantum standards (quantum sensors) based on cold atoms in satellite navigation are considered. The advantages of placing OFS based on cold atoms in space are described. It is shown that in order to improve the accuracy of measurements using quantum sensors, it is necessary to study their operation in a state of weightlessness or microgravity on special platforms. A review of the main platforms providing microgravity conditions is given. A fundamentally new version of the test platform is proposed – slides of various shapes with a moving trolley. Four confi gurations of slides are described in detail, for each a computer simulation is implemented. A comparative analysis of the characteristics of the slides has been carried out, their advantages and disadvantages have been identifi ed, and the most eff ective confi guration has been found. A method for improving the quality of microgravity is proposed, which will be taken into account in the future.

About the Authors

A. P. Vyalykh
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Anton P. Vyalykh

Mendeleevo, Moscow region



A. V. Semenko
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Anastasia V. Semenko

Mendeleevo, Moscow region



D. V. Sutyrin
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Denis V. Sutyrin

Mendeleevo, Moscow region



G. S. Belotelov
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Gleb S. Belotelov

Mendeleevo, Moscow region



S. N. Slyusarev
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Sergey N. Slyusarev

Mendeleevo, Moscow region



References

1. B loom B. J., Nicholson T. L., Williams J. R., Campbell S. L., Bishof M., Zhang X., Zhang W., Bromley S. L., Ye J., Nature, 2014, vol. 506, 71. https://doi.org/10.1038/Nature12941

2. Nich olson T. L., et al., Nature communications, 2015, vol. 6, 6896. https://doi.org/10.1038/ncomms7896

3. Ushijima I., Takamoto M., Das M. et al., Nature Photonics, 2015, vol. 9, pp. 185–189. https://doi.org/10.1038/nphoton.2015.5

4. Xie Ju n, et al., Satellite Navigation Systems and Technologies, Springer, Singapore, 2021.

5. Liu Lian g, et al., Nature communications, 2018, vol. 9, 2760. https://doi.org/10.1038/s41467-018-05219-z

6. Schi ller S. et al., Precision test of General Relativity and the Equivalence Principle using ultrastable optical clocks: a mission proposal, Proceeding 39th ESLAB Symposium “Trends in Space Science and Cosmic Vision 2020”, pp. 39–42, F. Favata, J. Sanz-Forcada, A. Gimenez, eds., ESA SP-588, 2005.

7. Andr ew D. Ludlow, Martin M. Boyd, Jun Ye, Ekkehard Peik, Piet O. Schmidt, https://arxiv.org/abs:1407.3493v2 [physics.atomph] (2015), pp. 62–64.

8. Sch iller S., et al., Nuclear Physics B – Proceedings Supplements, 2007, vol. 166, pp. 300–302. https://doi.org/10.1016/j.nuclphysbps.2006.12.032

9. Tapl ey B. D. et al., Science, 2004, vol. 305, 5683, pp. 503– 505. https://doi.org/10.1126/science.1099192

10. Belotelov G. S., Sutyrin D. V., Slyusarev S. N., Towards a Transportable Optical Frequency Standard on Neutral Ytterbium Atoms, Rocket-Space Device Engineering and Information Systems, 2019, vol. 6 (1), pp. 24–31. (In Russ) https://doi.org/10.30894/issn2409-0239.2019.6.1.24.31

11. We stergaard Philip G., Jérôme Lodewyck, Lisete Maria Lorini, Arnaud Lecallier, Physical review letters, 2011, vol. 106 (21), 210801. https://doi.org/10.1103/PhysRevLett.106.210801

12. Fal ke Stephan, et al., 2013, https://arxiv.org/abs/1312.3419v1 [physics.atom-ph].

13. YuNan, Kohel J., Kellogg J. et al., Applied Physics B, 2006, vol. 84 (4), pp. 647–652. https://doi.org/10.1007/s00340-006-2376-x

14. Asen baum Peter, et al., Physical Review Letters, 2020, vol. 125 (19), 191101. https://doi.org/10.1103/PhysRevLett.125.191101

15. Drink water M. R., Floberghagen R., Haagmans R., Muzi D., Popescu A., Space Science Reviews, 2003, vol. 108 (1-2), pp. 419– 432. https://doi.org/10.1007/978-94-017-1333-7_36

16. Johannessen J. A., Balmino G., Le Provost C. et al., Surveys in Geophysics, 2003, vol. 24, pp. 339–386. https://doi.org/10.1023/B:GEOP.0000004264.04667.5e

17. Reig ber, C., Jochmann, H., Wünsch, J., et al., Earth observation with CHAMP, 2005, pp. 25–30. https://doi.org/10.1007/3-540-26800-6_4

18. Brockmann J. M., Zehentner N., Höck E., Pail R., Loth I., Mayer-Gürr T., Schuh W-D., Geophysical Research Letters, 2014, vol. 41 (22), pp. 8089–8099. https://doi.org/10.1002/2014GL061904

19. Agu ilera D. N., Ahlers H., Battelier A., et. al., Classical and Quantum Gravity, 2014, vol. 31 (11), 115010. https://doi.org/10.1088/0264-9381/31/11/115010

20. Alts chul B., Bailey Q. G., Blanchet L., et. al., Advances in Space Research, 2015, vol. 55 (1), pp. 501–524. https://doi.org/10.1016/j.asr.2014.07.014

21. Chi ow S. W., Williams J., Yu N., Müller H., Physical Review A, 2017, vol. 95 (2), 021603. https://doi.org/10.1103/PhysRevA.95.021603

22. Willia ms J., Chiow S. W., Yu N., Müller H., New Journal of Physics, 2016, vol. 18 (2), 025018. https://doi.org/10.1088/1367-2630/18/2/025018

23. Malc olm Jonathan Ian, Doctoral dissertation of philosophy (University of Birmingham, Birmingham, 2016).

24. Bon gs K., Boyer V., Cruise M. A., et. al., Proc. SPIE 9900, Quantum Optics, SPIE Photonics Europe, 2016, Brussels, Belgium, 990009. https://doi.org/10.1117/12.2232143

25. Ell iott Ethan R., et al., Microgravity, 2018, vol. 4 (1), pp. 1–7. https://doi.org/10.1038/s41526-018-0049-9

26. Wa rner Marvin, et al., On the design of BECCAL–a quantum optics experiment aboard the ISS, Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1–5 October 2018, IAF, 2018, IAC-18, A2, IP, 7, x46028, available at: https://iafastro.directory/iac/archive/browse/IAC-18/A2/IP/46028/ (accessed 03.02.2022).

27. Schille r S., et al., Let’s embrace space, 2012, vol. 2 (45), 452. https://doi.org/10.2769/31208

28. Schi ller S., et al., ELIPS-3 The Space Optical Clocks (SOC) Project Final Report, 2012, available at: http://www.exphy. uni-duesseldorf.de/PDF/Space%20Optical%20Clocks%20 Final%20Report%20v11%20version%20for%20double-sided% 20printing%20v3.pdf (accessed 25.02.2022).

29. Cacc iapuoti L., Salomon C., European Physical Journal Special Topics, 2009, vol. 172 (1), pp. 57–68. https://doi.org/10.1140/EPJST/E2009-01041-7

30. Batte lier B., Barrett B., Fouché L., et. al., Proc. SPIE 9900, Quantum Optics, SPIE Photonics Europe, 2016, Brussels, Belgium, 990004. https://doi.org/10.1117/12.2228351

31. Chei ney P., Fouché L., Templier S., Napolitano F., Battelier B., Bouyer P., Barrett B., Physical Review Applied, 2018, vol. 10 (3), 034030. https://doi.org/10.1103/PhysRevApplied.10.034030

32. Sor rentino Francesco, et al., Journal of Physics: Conference Series, 2011, vol. 327, no. 1. https://doi.org/10.1088/1742-6596/327/1/012050

33. Ny man Robert A., et al, Applied Physics B, 2006, vol. 84 (4), pp. 673–681. https://doi.org/10.1007/s00340-006-2395-7

34. Gross e Jens, et al., AIAA SPACE 2014 Conference and Exposition, 4–7 August 2014, San Diego, CA, AIAA, 2014, 4210. https://doi.org/10.2514/6.2014-4210

35. Stammi nger Andreas, et al., MAIUS-1 – vehicle, subsystems design and mission operations, Proceedings 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, 7–12 June 2015, Tromsø, Norway, ESA Communications, 2015, pp. 183–191.

36. Els en Michael, et al., Design of the MAIUS-2/3 Atom Interferometer on a Sounding Rocket, Proceedings of the 67th International Astronautical Congress (IAC 2016), Guadalajara, Mexico, 26–30 September 2016, IAF, 2016, IAC-16.A2.3.2, pp 464–471.

37. Els en Michael, et al., Final design of the MAIUS-2/3 payload – an atom interferometer on a sounding rocket, Proceedings of the 69th International Astronautical Congress (IAC 2018), 1–5 October 2018, Bremen, Germany, IAF, 2018, IAC-18.A2.3.5, pp. 1026–1031.

38. Dink elaker Aline, et al., Frontiers in Optics 2016, Rochester, New York, 17–21 October 2016, OSA Technical Digest, 2016, FF1H.1. https://doi.org/10.1364/FIO.2016.FF1H.1

39. Münti nga Hauke, et al., QUANTUS: Applications of Bose-Einstein condensates in microgravity, 38th COSPAR Scientifi c Assembly, Bremen, Germany, 18–25 July 2010, 2010, H04-0015-10, p. 2.

40. Rudo lph Jan, et al., Microgravity Science and Technology, 2011, vol. 23 (3), pp. 287–292. https://doi.org/10.1007/S12217-010-9247-0

41. Herr mann Sven, Hansjörg Dittus, Claus Lämmerzahl, Classical and Quantum Gravity, 2012, vol. 29 (18), 184003. https://doi.org/10.1088/0264-9381/29/18/184003

42. Scharrin ghausen Marco, Quantus Team, Ernst Maria Rasel, Bose-Einstein Condensation in Extended Microgravity, 39th COSPAR Scientifi c Assembly, July 14–22, 2012, Mysore, India, 2012, H0.6, p. 1710.

43. D ittus H., Endeavour, 1991, vol. 15 (2), pp. 72–78. https://doi.org/101016/S0160-9327(05)80008-0

44. Zero Gravity Research Facility User’s Guide, 2017, available at: https://www1.grc.nasa.gov/wp-content/uploads/Zero-GravityResearch-Facility-users-guide.pdf (accessed 03.02.2022).

45. 2.2 second drop tower, NASA Glenn Research Center, 2008, available at: https://www1.grc.nasa.gov/facilities/drop/ (accessed 03.02.2022).

46. Degtyar V. G., 70th anniversary of the state rocket center named after academician V. R Makeyev, Space Engineering and Technology, 2018, no. 2 (21), available at: https://www.energia.ru/ktt/ archive/2018/02-2018/02-01.pdf (accessed: 10.02.2022). (In Russ.)

47. Lo tz Christoph, et al., Logistics Journal: Proceedings, 2020, no. 12. http://dx.doi.org/10.2195/lj_Proc_lotz_en_202012_01

48. Con don Gabriel, et al., Physical Review Letters, 2019, vol. 123 (24), 240402. https://doi.org/10.1103/PhysRevLett.123.240402

49. Ne vsky Alexander, et al., Optics Letters, 2013, vol. 38 (22), pp. 4903–4906. https://doi.org/10.1364/OL.38.004903


Review

For citations:


Vyalykh A.P., Semenko A.V., Sutyrin D.V., Belotelov G.S., Slyusarev S.N. Microgravity test complex for mobile and portable optical frequency standards. Izmeritel`naya Tekhnika. 2022;(3):45-52. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-3-45-52

Views: 195


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)