

Fundamental physical constants: results in search for and description of variations
https://doi.org/10.32446/0368-1025it.2022-3-3-8
Abstract
We consider the current results in search for and description of temporal variations of fundamental physical constants (FPC) obtained under laboratory and astrophysical conditions. Results in search for constants variations have been obtained with the help of laboratory and astrophysical data. On the basis of fi xed values of base constants, those FPC have been chosen that can exhibit variations of greatest interest from the viewpoints of physics and metrology. An analysis of the current data concerning these constants is performed, and estimates of their variations on large time scales are presented. We point out the signifi cance of studying long-term FPC variations for both practical and fundamental metrology.
About the Authors
K. A. BronnikovRussian Federation
Kirill A. Bronnikov
Moscow
V. D. Ivashchuk
Russian Federation
Vladimir D. Ivashchuk
Moscow
V. V. Khruschov
Russian Federation
Viacheslav V. Khruschov
Moscow
References
1. Bureau International des Poids et Measures: [website], Resolution 1 of the 26th CGPM (2018), available at: http://www. bipm.org/en/CGPM/db/26/1/ (accessed: 08.10.2020).
2. Comittee International des Poids et Measures (CIPM), 1946, Resolution 2, available at: http://www.bipm.org/en/CIPM/db/1946/2 (accessed: 08.10.2020).
3. Mills I. M., Mohr P. J., Quinn T. J., Taylor B. N., Williams E. R., Metrologia, 2006, vol. 43, no. 3, pp. 227–246. https://doi.org/10.1088/0026-1394/43/3/006
4. Milton M. J. T., Davis R., Fletcher N., Metrologia, 2014, vol. 51, no. 3, pp. R21–R30. https://doi.org/10.1088/0026-1394/51/3/r21
5. SI Brochure: The International System of Units (SI) (9th edition) 2016, available at: http://www.bipm.org/en/publications/sibrochure (accessed: 08.10.2020).
6. Milne E. A., Relativity, Gravitation and World-Structure, Clarendon press, Oxford, Oxford University Press, London, 1935, VIII+365 p.
7. Dirac P. A. M., Nature, 1937, vol. 139, 323. https://doi.org/10.1038/139323a0
8. Uzan J.-P., Living Reviews in Relativity, 2011, vol. 14, no. 2, pp. 1–155. https://doi.org/10.12942/lrr-2011-2
9. Martins C. J. A. P., Rep. Prog. Phys., 2017, vol. 80, no. 12, 126902. https://doi.org/10.1088/1361-6633/aa860e
10. Fletcher N., Davis R. S., Stock M., Milton M. J. T., Modernizing the SI: implications of recent progress with the fundamental constants, 2015, https://arxiv.org/abs/1510.08324v1 [physics.ins-det].
11. Bronnikov K. A., Ivashchuk V. D., Kalinin M. I., Kononogov S. A., Melnikov V. N., Khruschov V. V., Measurement Techniques, 201 5, vol. 58, pp. 127–136. https://doi.org/10.1007/s11018-015-0674-6
12. Borde Ch. J., Reforming the international system of units: on our way to redefi ne the base units solely from fundamental constants and beyond, 2016, https://arxiv.org/abs/1602.01752v1 [physics.gen-ph].
13. Stock M., Witt T. J., Metrologia, 2006, vol. 43, no. 6, pp. 583–587. https://doi.org/10.1088/0026-1394/43/6/014
14. Khruschov V. V., Measurement Techniques, 2017, vol. 60, no. 7, pp. 649–655. https://doi.org/10.1007/s11018-017-1250-z
15. Khruschov V. V., On possible ways for future redefi nition of the SI time unit, 2021. https://doi.org/10.48550/arXiv.2102.05863
16. Staniukovich K. P., Melnikov V. N., Gidrodinamika polia i konstanty v teorii gravitatsii, Moscow, Energoatomizdat Publ., 1983, 256 p.
17. Bronnikov K. A., Kononogov S. A., Metrologia, 2006, vol. 43, no. 5, pp. 593–597. https://doi.org/10.1088/0026-1394/43/5/r01
18. Kononogov S. A., Melnikov V. N., Khruschov V. V., Gravitation and Cosmology, 2009, vol. 15, no. 2, pp. 158–163. https://doi.org/10.1134/S020228930902011X
19. Stadnik Y. V., Flambaum V. V., Manifestations of dark matter and variations of fundamental constants in atoms and astrophysical phenomena, 2015, https://arxiv.org/abs/1509.00966v1 [physics.atom-ph].
20. Fritzsch H., Sola J., Nunes R. C., Eur. Phys. J. C., 2017, vol. 77, 193. https://doi.org/10.1140/epjc/s10052-017-4714-z
21. Rosenband T., Hume D. B., Schmidt P. O., Chou C. W., Brusch A., Lorini L., Oskay W. H., Drullinger R. E., Fortier T. M., Stalnaker J. E., Diddams S. A., Swann W. C., Newbury N. R., Itano W. M., Winelandand D. J., Bergquist J. C., Science, 2008, vol. 319, no. 5871, pp. 1808–1812. https://doi.org/10.1126/science.1154622
22. Godun R. M., Nisbet-Jones P. B. R., Jones J. M., King S. A., Johnson L. A. M., Margolis H. S., Szymaniec K., Lea S. N., Bongs K., Gill P., Phys. Rev. Lett., 2014, vol. 113, no. 21, 210801. https://doi.org/10.1103/PhysRevLett.113.210801
23. Levshakov S. A., Ng K-W., Henkel C., Mookerjea B., Agafonova I. I., Liu S-Y., Wang W-H., Monthly Notices of the Royal Astronomical Society, August 2019, vol. 487, no. 4, pp. 5175–5187. https://doi.org/10.1093/mnras/stz1628
24. Webb J. K., King J. A., Murphy M. T., Flambaum V. V., Carswell R. F., Bainbridge M. B., Phys. Rev. Lett., 2011, vol. 107, 191101. https://doi.org/10.1103/PhysRevLett.107.191101
25. Barrow J. D., Lip S. Z. W., Phys. Rev. D, 2012, vol. 85, 023514. https://doi.org/10.1103/PhysRevD.85.023514
26. Bronnikov K. A., Melnikov V. N., Rubin S. G., Svadkovsky I. V., Gen. Relativ. Gravit., 2013, vol. 45, pp. 2509–2528. https://doi.org/10.1007/s10714-013-1601-2
27. Bronnikov K. A., Skvortsova M. V., Gravitation and Cosmology, 2013, vol. 19, no. 2, pp. 114–123. https://doi.org/10.1134/S0202289313020035
28. Lee Chung-Chi, Webb J. K., Milakovic D., Carswell R. F., Monthly Notices of the Royal Astronomical Society, 2021, vol. 507, no. 1, pp. 27–42. https://doi.org/10.1093/mnras/stab2005
29. McGrew W. F., Zhang X., Leopardi H., Fasano R. J., Nicolodi D., Beloy K., Yao J., Sherman J. A., Schäff er S. A., Savory J., Brown R. C., Römisch S., Oates C. W., Parker T. E., Fortier T. M., Ludlow A. D., Optica, 2019, vol. 6, pp. 448–454. https://doi.org/10.1364/OPTICA.6.000448
30. Konopliv A. S., Asmar S. W., Folkner W. M., et al., Icarus, 2011, vol. 211, no. 1, pp. 401–428. https://doi.org/10.1016/j.icarus.2010.10.004
31. Pitjeva E.V., Pitjev N. P., Solar System Research, 2012, vol. 46., pp. 78–87. https://doi.org/10.1134/S0038094612010054
32. Pitjeva E. V., Pitjev N. P., Pavlov D. A., Turygin C. C., Astronomy & Astrophysics, 2021, vol. 647, A141. https://doi.org/10.1051/0004-6361/202039893
33. Biskupek L., Müller J., Torre J.-M., Universe, 2021, vol. 7, no. 2, 34. https://doi.org/10.3390/universe7020034
34. Le T. D., Chinese Journal of Physics, 2021, vol. 73, pp. 147–153. https://doi.org/10.1016/j.cjph.2021.07.004
35. Planck Collaboration, Aghanim N., Akrami Y., Ashdown M., et al., Astronomy & Astrophysics, 2020, vol. 641, A6. https://doi.org/10.1051/0004-6361/201833910
36. Riess A. G., Casertano S., Yuan W., Macri L. M., Scolnic D., The Astrophysical Journal, 2019, vol. 876, 85. https://doi.org/10.3847/1538-4357/ab1422
37. Cheng G., Wu F., Chen X., Phys. Rev. D, 2021, vol. 103, no. 10, 103527. https://doi.org/10.1103/PhysRevD.103.103527
38. Galiautdinov A., Kopeikin S. M., Phys. Rev. D, 2016, vol. 94, no. 4. 044015. https://doi.org/10.1103/PhysRevD.94.044015
39. Novello M., Bittencourt E., Moschella U., Goulart E., Salim J. M., Toniato J., Journal of Cosmology and Astroparticle Physics, 2013, vol. 2013, no. 06, 014. https://doi.org/10.1088/1475-7516/2013/06/014
40. Bronnikov K. A., Eur. Phys. J. C, 2020, vol. 80, 434. https://doi.org/10.1140/epjc/s10052-020-8012-9
41. Tiesinga E., Mohr P. J., Newell D. B., Taylor B. N., Rev. Mod. Phys., 2021, vol. 93, no. 2, 025010. https://doi.org/10.1103/RevModPhys.93.025010
Review
For citations:
Bronnikov K.A., Ivashchuk V.D., Khruschov V.V. Fundamental physical constants: results in search for and description of variations. Izmeritel`naya Tekhnika. 2022;(3):3-9. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-3-3-8