

Accuracy analysis of the refractive index measurements by modifed prism methods
https://doi.org/10.32446/0368-1025it.2023-3-28-32
Abstract
Goniometric methods of measuring the refractive index of optically transparent materials based on the refraction of light by a triangular prism are considered. Modified method of the minimum deviation and 3 modified constant deviation methods are considered, which allows determining the refractive index of triangular prisms with unknown apex angles. According to modified methods, the angles of light deviation by a prism are measured with goniometer, and the refractive index of the material and the prism angles are determined from solving the systems of equations. Thus, there is no need for preliminary measurement of the prism angles, which requires the use of special autocollimation goniometers. In addition, the modified methods do not use radiation reflected from the faces of the prism, which makes it possible to extend the spectral range of measurement of the refractive index to the infrared and ultraviolet regions. A comparative accuracy analysis of the considered methods for a prism with a refractive index of 1.5 and an angle of 60° as example is carried out. It is shown that the modified methods can be used for high-precision measurements of the refractive index in cases if the apex angles of the prism are unknown or their measurement is associated with technical difficulties. The considered methods can be used to measure the refractive index of triangular prisms made of optically transparent materials, as well as liquids poured into hollow prisms with plane-parallel transparent windows. The practical implementation of such a methods can be useful in the optical, chemical and food industries to control the composition and properties of optically transparent substances.
About the Authors
A. I. YurinRussian Federation
Alexander I. Yurin
Moscow
G. N. Vishnyakov
Russian Federation
Gennady N. Vishnyakov
Moscow
V. L. Minaev
Russian Federation
Vladimir L. Minaev
Moscow
References
1. Kuiper M., Van de Nes A., Nieuwland R., Varga Z., Van der Pol E. American Journal of Reproductive Immunology, 2021, no. 85(2), e13350. https://doi.org/10.1111/aji.13350
2. Oti W. IOSR Journal of Applied Chemistry, 2016, vol. 9, pp. 89–91. https://doi.org/10.9790/5736-0907018991
3. A. Shehadeh, A. Evangelou, D. Kechagia, P. Tataridis, A. Chatzilazarou, F. Shehadeh. Food Chemistry, 2020, vol. 329, 127085. https://doi.org/10.1016/j.foodchem.2020.127085
4. Xu M., Shao S., Weng N., Zhou L., Liu Q., Zhao Y. Applied Sciences, 2021, vol. 11(22), 10548. https://doi.org/10.3390/app112210548
5. Nitta T., Sekimoto Y., Hasebe T., Noda K., Sekiguchi S., Nagai M., Hattori S., Murayama Y., Matsuo H., Dominjon A., Shan W., Naruse M., Kuno N., Nakai N. Journal of Low Temperature Physics, 2018, vol. 193, pp. 976–983. https://doi.org/10.1007/s10909-018-2047-4
6. Konopel’ko L. A. Refraktometricheskie metody v fiziko-khimicheskikh izmereniyakh. Moscow, Triumph Publ., 2020, 224 p. (in Russ.)
7. Astrua M., Pisani M. Measurement Science and Technology, 2009, vol. 20, no. 9, 095305. https://doi.org/10.1088/0957-0233/20/9/095305
8. Leikin M. V., Molochnikov B. I., Morozov V. N., Shakaryan E. S. Otrazhatelnaya refraktometriya. Leningrad, Mashinostroenie Publ., 1983, 224 p. (in Russ.)
9. Ioffe B. V. Refractometric Methods in Chemistry. Leningrad, Khimiya Publ., 1974, 350 p. (in Russ.)
10. Born M., Wolf E. Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light. 4th ed., Pergamon Press, Oxford, New York, 1969, 808 p.
11. Korolev A. N., Gartsuyev A. I., Polishchuk G. S., Tregub V. P. Journal of Optical Technology, 2009, vol. 76, no. 10, pp. 624–628. https://doi.org/10.1364/JOT.76.000624
12. Yurin A. I., Vishnyakov G. N., Minayev V. L. Optics and Spectroscopy, 2022, vol. 130, no. 12., pp. 1899–1903 (In Russ.) https://doi.org/10.21883/OS.2022.12.54098.4103-22
13. Yurin A. I., Vishnyakov G. N., Minayev V. L. Measurement of the refractive index using a modifi ed constant deviation method. Izmeritel’naya Tekhnika, 2022, no. 12, pp. 35–39 (In Russ.) https://doi.org/10.32446/0368-1025it.2022-12-35-39
14. Yurin A. I., Vishnyakov G. N., Minayev V. L. Measurement of the refractive index using a modified prism method. Izmeritel’naya Tekhnika, 2023, no. 2, pp. 19–23 (In Russ.) https://doi.org/10.32446/0368-1025it.2023-2-19-23
15. Tilton L. W., Prism Refractometry and Certain Goniometrical Requirements for Precision (Classic Reprint). Forgotten Books, 2017.
16. Tentori-Santa-Cruz D., Lerma J. R. Optical Engineering, 1990, vol. 29, no. 2, pp. 160–168. https://doi.org/10.1117/12.55573
17. Vishnyakov G. N., Kornysheva S. V. Measurement Techniques, 2012, vol. 54, no. 12, pp. 1372–1377. https://doi.org/10.1007/s11018-012-9898-x
Review
For citations:
Yurin A.I., Vishnyakov G.N., Minaev V.L. Accuracy analysis of the refractive index measurements by modifed prism methods. Izmeritel`naya Tekhnika. 2023;(3):28-32. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-3-28-32