

Fast algorithm bandwidth selection for multivariate kernel density estimation Fast algorithm bandwidth selection for multivariate kernel density estimation
https://doi.org/10.32446/0368-1025it.2018-10-19-23
Abstract
Keywords
About the Authors
A. V. LapkoRussian Federation
V. A. Lapko
Russian Federation
References
1. Лапко А. В., Лапко В. А. Многоуровневые непараметрические системы обработки информации. Красноярск: СибГАУ, 2013.
2. Rudemo M. Empirical choice of histogram and kernel density estimators // Scandinavian Journal of Statistics. 1982. № 9. P. 65-78.
3. Hall P. Large-sample optimality of least squares cross-validation in density estimation // Annals of Statistics. 1983. V. 11. P. 1156-1174.
4. Jiang M., Provost S.B. A hybrid bandwidth selection methodology for kernel density estimation // Journal of Statistical Computation and Simulation. 2014. V. 84. No. 3. P. 614-627.
5. Dutta S. Cross-validation Revisited // Communications in Statistics-Simulation and Computation. 2016. V. 45. No. 2. P. 472-490.
6. Heidenreich N.-B., Schindler A., Sperlich S. Bandwidth selection for kernel density estimation: a review of fully automatic selectors // AStA Advances in Statistical Analysis. 2013. V. 97, No. 4. P. 403-433.
7. Лапко А. В., Лапко В. А. Анализ методов оптимизации непараметрической оценки плотности вероятности по коэффициенту размытости ядерных функций // Измерительная техника. 2017. № 6. С. 3-8.
8. Borrajo M.I., González-Manteiga W., Martínez-Miranda M.D. Bandwidth selection for kernel density estimation with length-biased data // Journal of Nonparametric Statistics. 2017. V. 29. No. 3. P. 636-668.
9. Chen S. Optimal bandwidth selection for kernel density functionals estimation // Journal of Probability and Statistics. 2015. V. 2015. P. 1-21.
10. Sheather S. J. Density Estimation // Statistical Science. 2004. V. 19. No. 4. P. 588-597.
11. Silverman B. W. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986.
12. Scott D. W. Multivariate Density Estimation: Theory, Practice, and Visualization. N. Y.: John Wiley, 1992
13. Bowman A. W., Azzalini A. Applied Smoothing Techniques for Data Analysis. London: Oxford University Press, 1997.
14. Parzen E. On estimation of a probability density function and mode // The Annals of Mathematical Statistics. 1962. V. 33. No 3. P. 1065-1076.
15. Деврой Л., Дьерфи Л. Непараметрическое оценивание плотности. (L1-подход). М.: Мир, 1988.
16. Епанечников В. А. Непараметрическая оценка многомерной плотности вероятности // Теория вероятности и её применения. 1969. Т. 14. № 1. С. 156-161.
17. Lapko A. V., Lapko V. A. Regression Estimate of the Multidimensional Probability Density and Its Properties // Optoelectronics, Instrumentation and Data Processing. 2014. V. 50. No. 2. P. 148-153
Review
For citations:
Lapko A.V., Lapko V.A. Fast algorithm bandwidth selection for multivariate kernel density estimation Fast algorithm bandwidth selection for multivariate kernel density estimation. Izmeritel`naya Tekhnika. 2018;(10):19-23. (In Russ.) https://doi.org/10.32446/0368-1025it.2018-10-19-23