Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Fast algorithm bandwidth selection for multivariate kernel density estimation Fast algorithm bandwidth selection for multivariate kernel density estimation

https://doi.org/10.32446/0368-1025it.2018-10-19-23

Abstract

Proposed fast technique bandwidth selection for kernel function in multivariate nonparametric density estimation of the Rosenblatt-Parzen type. The method is based on the results of an analysis of the asymptotic properties of the multivariate density estimate. The properties of a fast algorithm bandwidth selection for multivariate kernel density estimation are investigated.

About the Authors

A. V. Lapko
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences (ICM SB RAS)
Russian Federation


V. A. Lapko
Reshetnev Siberian State University of Science and Technology
Russian Federation


References

1. Лапко А. В., Лапко В. А. Многоуровневые непараметрические системы обработки информации. Красноярск: СибГАУ, 2013.

2. Rudemo M. Empirical choice of histogram and kernel density estimators // Scandinavian Journal of Statistics. 1982. № 9. P. 65-78.

3. Hall P. Large-sample optimality of least squares cross-validation in density estimation // Annals of Statistics. 1983. V. 11. P. 1156-1174.

4. Jiang M., Provost S.B. A hybrid bandwidth selection methodology for kernel density estimation // Journal of Statistical Computation and Simulation. 2014. V. 84. No. 3. P. 614-627.

5. Dutta S. Cross-validation Revisited // Communications in Statistics-Simulation and Computation. 2016. V. 45. No. 2. P. 472-490.

6. Heidenreich N.-B., Schindler A., Sperlich S. Bandwidth selection for kernel density estimation: a review of fully automatic selectors // AStA Advances in Statistical Analysis. 2013. V. 97, No. 4. P. 403-433.

7. Лапко А. В., Лапко В. А. Анализ методов оптимизации непараметрической оценки плотности вероятности по коэффициенту размытости ядерных функций // Измерительная техника. 2017. № 6. С. 3-8.

8. Borrajo M.I., González-Manteiga W., Martínez-Miranda M.D. Bandwidth selection for kernel density estimation with length-biased data // Journal of Nonparametric Statistics. 2017. V. 29. No. 3. P. 636-668.

9. Chen S. Optimal bandwidth selection for kernel density functionals estimation // Journal of Probability and Statistics. 2015. V. 2015. P. 1-21.

10. Sheather S. J. Density Estimation // Statistical Science. 2004. V. 19. No. 4. P. 588-597.

11. Silverman B. W. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986.

12. Scott D. W. Multivariate Density Estimation: Theory, Practice, and Visualization. N. Y.: John Wiley, 1992

13. Bowman A. W., Azzalini A. Applied Smoothing Techniques for Data Analysis. London: Oxford University Press, 1997.

14. Parzen E. On estimation of a probability density function and mode // The Annals of Mathematical Statistics. 1962. V. 33. No 3. P. 1065-1076.

15. Деврой Л., Дьерфи Л. Непараметрическое оценивание плотности. (L1-подход). М.: Мир, 1988.

16. Епанечников В. А. Непараметрическая оценка многомерной плотности вероятности // Теория вероятности и её применения. 1969. Т. 14. № 1. С. 156-161.

17. Lapko A. V., Lapko V. A. Regression Estimate of the Multidimensional Probability Density and Its Properties // Optoelectronics, Instrumentation and Data Processing. 2014. V. 50. No. 2. P. 148-153


Review

For citations:


Lapko A.V., Lapko V.A. Fast algorithm bandwidth selection for multivariate kernel density estimation Fast algorithm bandwidth selection for multivariate kernel density estimation. Izmeritel`naya Tekhnika. 2018;(10):19-23. (In Russ.) https://doi.org/10.32446/0368-1025it.2018-10-19-23

Views: 149


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)