Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Алгоритм одновременной локализации и картографии на основе анализа видеосигнала

Abstract

This paper discusses the implementation of simultaneous localization and mapping algorithms in industrial television system. A description of a probabilistic model of the SLAM task is presented based on the FastSLAM algorithm. The article also discusses the possibility of using the unscented Kalman filter to estimate the movement of spatial landmarks. These points are the key features of the camera images that can be consistently detected and recognized within the video stream. The work contains a general model of camera movement and the method of assessing the pose in a space using a particle filter.

About the Authors

А. Прозоров
Ярославский государственный университет им. П. Г. Демидова
Russian Federation


А. Приоров
Ярославский государственный университет им. П. Г. Демидова
Russian Federation


А. Тюкин
Ярославский государственный университет им. П. Г. Демидова
Russian Federation


И. Лебедев
Ярославский государственный университет им. П. Г. Демидова
Russian Federation


References

1. Salimpour Y., Soltanian-Zadeh H., Abolhassani M. D. Extended Kalman filtering of point process observation // IEEE Engineering in Medicine and Biology Society (EMBC). 2010. Р. 6670-6673.

2. Ding-Jie Xu, Chen Shen, Feng Shen. Adaptive variational Bayesian extended Kalman filtering for nonlinear systems // 3Th Instrumentation, Measurement, Computer, Communication and Control (IMCCC). 2013. Р. 1552-1557.

3. Montemerlo M., Thrun S., Koller D., Wegbreit B. FastSLAM: a factored solution to the simultaneous localization and mapping problem // Proceedings of the AAAI National Conference on Artificial Intelligence. 2002. Edmonton, Canada. Р. 593-598.

4. Murphy K. Bayesian map learning in dynamic environments // Proc. of the Conf. on Neural Information Processing Systems (NIPS). Denver, USA. 1999. Р. 1015-1021.

5. Doucet A., Freitas N., Murphy K., Russell S. Rao-Blackwellised particle filtering for dynamic Bayesian networks // Proc. of the 16th Conf. on Uncertainty in Artificial Intelligence. 2000. Р. 176-183.

6. Nosan Kwak, Beom-Hee Lee, Yokoi K. Result representation of Rao-Blackwellized particle filtering for SLAM // Control, Automation and Systems (ICCAS). 2008. Р. 698-703.

7. Leung K.Y.K., Inostroza F., Adams M. An improved weighting strategy for Rao-Blackwellized probability hypothesis density simultaneous localization and mapping // Control, Automation and Information Sciences (ICCAIS). 2013. Р. 103-110.

8. Wadenbäck M., Heyden A. Ego-motion recovery and robust tilt estimation for planar motion using several homographies // 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2014). P. 635-639.

9. Tyukin A., Lebedev I., Priorov A. The development and research of the indoor navigation system for a mobile robot with the possibility of obstacle detection // 16th Conf. Open Innovations Association (FRUCT16). 2014. Р.115-122

10. Herbert Bay, Tinne Tuytelaars, and Luc Van Gool Speeded up robust features // ETH Zurich. Katholieke Universiteit Leuven. V. 110. Iss. 3. 2008. P. 346-359.

11. Zhou Xu, Li Jun, Guo Wenjing. FastSLAM algorithm based on weight optimal compensation extended Kalman filter // 33rd Chinese Contr. Conf. (CCC), 2014. Р. 8468-8473.

12. Julier S. J., Uhlmann J. K. A new extension of the Kalman filter to nonlinear systems // Int. Symp. Aerospace/Defense Sensing. Simul. аnd Controls. 1997. P. 182-193.

13. Hartley R., Zisserman A. Multiple view geometry in computer vision // 2nd edition: Cambridge University Press. 2003.

14. Kuemmerle R., Steder B., Dornhege C., Ruhnke M., Grisetti G., Stachniss C., Kleiner A. On Measuring the Accuracy of SLAM Algorithms // J. of Autonom. Robots. 2009. V. 27. N. 4. Р. 387-407.

15. Blanco J., Moreno F., Gonzalez J. A collection of outdoor robotic datasets with centimeter-accuracy ground truth // Autonomous Robots. 2009. P. 327-351.


Review

For citations:


 ,  ,  ,   . Izmeritel`naya Tekhnika. 2016;(10):45-48. (In Russ.)

Views: 89


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)