Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A method of the speech signal pitch frequency measurement for acoustic speech analysis systems

https://doi.org/10.32446/0368-1025it.2019-3-59-63

Abstract

In this paper we propose a novel method for measuring the pitch frequency of the increased noise immunity. The problem of protection against intensive background noise is solved in it by the frequency selection of vocalization pieces of a speech signal according to the scheme of the combfilter of inter-periodical accumulation. The efficiency of a new method is theoretically and experimentally examined using the specially developed multi-channel frequency measurement device for the acoustic speech analysis. It is shown that a measurement error in relative terms does not exceed 2 % for the 10 dB signal-to-noise ratio.

About the Authors

A. V. Savchenko
National Research University Higher School of Economics, Laboratory of algorithms and technologies for network analysis
Russian Federation


V. V. Savchenko
Nizhniy Novgorod State Linguistic University
Russian Federation


References

1. Lech M., He L. Stress and Emotion Recognition Using Acoustic Speech Analysis / In: Mental Health Informatics.- Springer, Berlin: Heidelberg. 2014. V. 491. Р. 163-184.

2. Dalton J. C., Keegan L. C. Using Speech Analysis to Unmask Perceptual Bias // Perspectives of the ASHA Special Interest Groups. 2017. V. 2 (SIG 19). P. 9-18.

3. Савченко В. В. Метод измерения фонетического качества речи на основе теоретико-информационного подхода // Измерительная техника. 2018. № 1. С. 60-64.

4. Adalbjornsson S. I., Jakobsson A., Christensen M. G. Multi-pitch Estimation Exploiting Block Sparsity // Signal Processing. 2015. V. 109. P. 236-247.

5. Атаянц Б. А., Паршин В. С. Измерение частоты гармонического сигнала на фоне аддитивного белого шума // Измерительная техника. 2004. № 6. С. 42-45.

6. Алимурадов А. К. Алгоритм измерения частоты основного тона речевых сигналов на основе комплементарной множественной декомпозиции на эмпирические моды // Измерительная техника. 2016. № 12. С. 53-57.

7. Savchenko V. V. Words Phonetic Decoding Method with the Suppression of Background Noise // Journal of Communications Technology and Electronics. 2017. V. 62. No. 7. P. 788-793.

8. Hasan M. A. Pitch Detection Algorithm Based on Windowless Autocorrelation Function and Modified Cepstrum Method in Noisy Environments // International Journal of Computer Science and Network Security. 2017. V. 17. No. 2. P. 106-112.

9. Savchenko V. V. The Principle of the Information-Divergence Minimum in the Problem of Spectral Analysis of the Random Time Series Under the Condition of Small Observation Samples // Radiophysics and Quantum Electronics. 2015. V. 58. No. 5. P. 373-379.

10. Казаринова Ю. М. Радиотехнические системы. М.: Издательский центр «Академия», 2008.

11. Savchenko V. V., Savchenko A. V. Information Theoretic Analysis of Efficiency of the Phonetic Encoding-Decoding Method in Automatic Speech Recognition // Journal of Communications Technology and Electronics. 2016. V. 61. No. 4. P. 430-435.

12. Фант Г. Акустическая теория речеобразования. М.: Наука, 1964.

13. Лезин Ю. С. Оптимальные фильтры и накопители импульсных сигналов. М.: Советское радио, 1969.

14. Лезин Ю. С. Введение в теорию и технику радиотехнических систем. М.: Радио и связь, 1986.

15. Savchenko V. V. Enhancement of the Noise Immunity of a Voice-Activated Robotics Control System Based on Phonetic Word Decoding Method // Journal of Communications Technology and Electronics. 2016. V. 61. No. 12. P. 1374-1379.

16. ГОСТ 12692-67. Измерители частоты резонансные. Методы и средства поверок.

17. Программный комплекс Voice Self-Analysis. [Электрон. ресурс]:https://sites.google.com/site/frompldcreators/VoiceSelfAnalysisDemo.zip (дата обращения: 09.09.2018).

18. Протокол натурных испытаний [Электрон. ресурс]: https://sites.google.com/site/frompldcreators/VSA_Experimental_results.pdf (дата обращения: 09.09.2018).

19. Савченко В. В. Определение объёма контрольной выборки в условиях априорной неопределённости по принципу гарантированного результата // Научные ведомости Белгородского госуниверситета. Серия: Экономика. Информатика. 2015. № 1 (198). С. 74-78.


Review

For citations:


Savchenko A.V., Savchenko V.V. A method of the speech signal pitch frequency measurement for acoustic speech analysis systems. Izmeritel`naya Tekhnika. 2019;(3):59-63. (In Russ.) https://doi.org/10.32446/0368-1025it.2019-3-59-63

Views: 162


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)