Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Алгоритм измерения частоты основного тона речевых сигналов на основе комплементарной множественной декомпозиции на эмпирические моды

Abstract

The problem of measurement of speech signals pitch frequency is discussed. The existing pitch frequency measurement algorithms are presented, and the need to improve the measurement accuracy using adaptive processing techniques is proved. A new PF measurement algorithm based on the method of Complementary Ensemble Empirical Mode Decomposition is developed. The experimental studies of the developed algorithm are conducted, and the results prove the algorithm stability to the pitch frequency modulation and increase in PF measurement accuracy.

About the Author

А. Алимурадов
Пензенский государственный университет
Russian Federation


References

1. Михайлов В. Г., Златоусова Л. В. Измерение параметров речи / Под ред. М. А. Сапожникова. М.: Радио и связь, 1987.

2. Camacho A., Harris J. G. A sawtooth waveform inspired pitch estimator for speech and music // J. Acoust. Soc. Am. 2008. V. 123 (4). N. 9. P. 1638-1652.

3. Жиляков Е. Г., Фирсова А. А. Оценивание периода основного тона звуков русской речи // Научные ведомости Белгородского государственного университета. Серия: История. Политология. Экономика. Информатика. 2013. № 1 (144). Вып. 25/1. С. 173-181.

4. Azarov E., Vashkevich M., Petrovsky A. Instantaneous pitch estimation based on RAPT framework // Signal Proc. Conf. (EUSIPCO). 2012. Proc. of the 20th European. 2012. P. 2787-2791.

5. Abe T., Kobayashi T., Imai S. Robust pitch estimation with harmonics enhancement in noisy environment based on instantaneous frequency // Proc. ICSLP96. 1996. V. 2. P. 1277-1280.

6. Hasan M. K., Shahnaz C., Fattah S. A. Determination of pitch of noisy speech using dominant harmonic frequency // Proc. IEEE Int. Symp. on Circuits and Systems. 2003. V. 2. P. 556-559.

7. Cheveigne A., Kawahara H. YIN, a fundamental frequency estimator for speech and music // J. Acoust. Soc. Am. 2002. V. 111(4). N. 4. P. 1917-1930.

8. Yeh J. R., Shieh J. S., Huang N. E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method // Advances in Adaptive Data Analysis. 2010. V. 2 (2). P. 135-156.

9. Алимурадов А. К., Муртазов Ф. Ш. Методы повышения эффективности распознавания речевых сигналов в системах голосового управления // Измерительная техника. 2015. № 10. С. 20-24.

10. Alimuradov A. K., Churakov P. P. Noise-robust speech signals processing for the voice control system based on the complementary ensemble empirical mode decomposition / Int. Siberian Conf. Control and Communications (SIBCON 2015). 2015. May 21-23. Russia. Omsk.

11. Huang N. E., Zheng S., Steven R. L. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. the Royal Society of London A. 1998. V. 454. P. 903-995.

12. Zhaohua W, Huang N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method // Advances in Adaptive Data Analysis. 2009. V. 1 (1). P. 1-41.

13. Yeh, J. R., Shieh, J. S., Huang N. E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method // Advances in Adaptive Data Analysis. 2010. V. 2 (2). P. 135-156.

14. Bhawna Sh., Sukhvinder K. Distinction Between EMD & EEMD Algorithm for Pitch Detection in Speech Processing // Int. J. Engineering Trends and Technology (IJETT). 2014. V. 7. N. 3. P. 119-125.

15. Schlotthauer G., Torres M. E., Rufiner H. L. A new algorithm for instantaneous f0 speech extraction based on ensemble empirical mode decomposition / 17th European Signal Processing Conference (EUSIPCO 2009), Glasgow, Scotland. 2009. P. 2347-2351.

16. Priyanka G., Mahendra Kumar P. Determine the Pitch Markers in Speech Signal Using Ensemble Empirical Mode Decomposition, Int. J. Advanced Research in Computer Science and Software Engineering, 2012. V. 2 (7). N. 7. P. 90-96.

17. Алимурадов А. К. Исследование частотно-избирательных свойств методов декомпозиции на эмпирические моды для оценки частоты основного тона речевых сигналов // Труды МФТИ. 2015. Т. 7. № 3. С. 56-68.

18. Алимурадов А. К., Муртазов Ф. Ш. Методы повышения эффективности распознавания речевых сигналов в системах голосового управления // Измерительная техника. 2015. № 10. С. 20-24.

19. Huang X., Acero A., Hon H.-W. Spoken Language Processing. Guide to Algorithms and System Developmen // Prentice Hall, 2001.


Review

For citations:


  . Izmeritel`naya Tekhnika. 2016;(12):53-57. (In Russ.)

Views: 95


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)