Метод определения концентраций пигментов кожи по ее мультиспектральным изображениям
Abstract
About the Authors
С. ЛысенкоRussian Federation
М. Кугейко
Russian Federation
References
1. Harvey A. R. e. a. Technology options for imaging spectrometry // Proc. SPIE Imag. Spectrometry VI. 2000. V. 4132. P. 13–24.
2. Gat N. Imaging spectroscopy using tunable filters: a review // Proc. SPIE Wavelet Appl. VII. 2000. V. 4056. N 1. P. 50–64.
3. Pham T. H. e. a. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact fourier-transform hyperspectral imaging // Appl. Opt. 2000. V. 39. N 34. P. 6487–6497.
4. Claridge E. e. a. Quantifying mucosal blood volume fraction from multispectral images of the colon // Medical Imaging 2007: Physiology, Function, and Structure from Medical Images, SPIE Proc. 2007. V. 6511. P. 65110C.
5. Matts P. J., Cotton S. D. Spectrophotometric Intracutaneous Analysis (SIAscopy) / 3rd Edition Handbook of Cosmetic Science and Technology / Ed. Paye M., Barel A. N., Maibach H. I. N. Y.: Informa Healthcare USA, Inc. 2008. P. 275–283.
6. Jacques S. L. An update on photodynamic therapy applications // J. Innovative Opt. Health Sci. 2009. V. 2. N 2. P. 123–129.
7. Bersha K. S. Spectral imaging and analysis of human skin. Master Thesis Report. Joensuu, Finland: University of Eastern Finland, 2010.
8. Tseng T. Y., Lai P. J., Sung K. B. High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry // Opt. Express. 2011. V. 19. N 2. P. 1291–1300.
9. Martinkauppi B. Face color under varying illumination-analysis and applications. PhD Dissertation. University of Oulu, 2002.
10. Daisuke N., Norimichi T., Yoichi M. Real-time multi-spectral image processing for mapping pigmentation in human skin // Med. Imaging Technol. 2002. V. 20. N 2. P. 123–133.
11. Pat. WO/2011/103576 IPC: G06T 7/00 (2006.01). Reflectance imaging and analysis for evaluating tissue pigmentation / Patwardhan S. V.
12. Лысенко С. А., Кугейко М. М. Метод оперативной количественной интерпретации спектра отражения биологической ткани // Электроника-инфо. 2012. № 2. С. 109–112.
13. Лысенко С. А., Кугейко М. М. Метод оперативной количественной интерпретации спектрально-пространственных профилей диффузного отражения биологических тканей // Оптика и спектроскопия. 2013. Т. 114. № 2. С. 105–114.
14. Wang L., Jacques S. L., Zheng L. Monte Carlo modeling of photon transport in multi-layered tissues // Computers Methods and Programs in Biomedicine. 1995. N 47. P. 131–146.
15. Пушкарева А. Е. Методы математического моделирования в оптике биоткани. СПб: СПбГУ ИТМО, 2008.
16. Egan W.G., Hilgerman T.W., Reichman J. Determination of Absorption and Scattering Coefficients for Nonhomogeneous Media. 2: Experiment // Appl. Opt. 1973. V. 12. N 8. P. 1816–1823.
17. Иванов А. П. Оптика рассеивающих сред. Минск: Наука и техника, 1969.
18. Saidi I. Transcutaneous Optical Measurement of Hyperbilirubinemia in Neonates. PhD thesis. Houston, USA: Rice University, 1992.
19. Jacques S. L. Skin optics, Oregon Medical Laser Center Monthly News [Электрон. ресурс]. http://omlc.ogi.edu/news/jan98/skinoptics.html (дата обращения 18.06.2012 г.).
20. Simpson R. e. a. Near-Infrared Optical Properties of Ex Vivo Human Skin and Subcutaneos Tissues Measured Using the Monte Carlo Inversion Technique // Phys. Med. Biol. 1998. V. 43. P. 2465–2478.
21. Salomatina E. e. a. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range // J. Biomed. Opt. 2006. V. 11. N 6. P. 064026-1–9.
Review
For citations:
, . Izmeritel`naya Tekhnika. 2013;(6):67-72. (In Russ.)