Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Гелиевый криостат для исследования свойств массивных твердотельных резонаторов при глубоком охлаждении

Abstract

A new helium cryostat for studies of properties of massive (in order of dozens of kilogram) solid acoustical and optical resonators is modernized and tested. The full cycle of cooling from the room temperature to nitrogen and helium temperature has been held. The dynamics of the model acoustical characteristics of the model was studied at different stages of cooling. The operational parameters of new cryostat were measured, and the mounting of optical inputs was completed for the study of models with cryogenic mirrors.

About the Authors

В. Крысанов
Государственный астрономический институт им. П. К. Штернберга, Московский государственный университет им. М. В. Ломоносова
Russian Federation


А. Мотылев
Государственный астрономический институт им. П. К. Штернберга, Московский государственный университет им. М. В. Ломоносова
Russian Federation


С. Орешкин
Государственный астрономический институт им. П. К. Штернберга, Московский государственный университет им. М. В. Ломоносова
Russian Federation


В. Руденко
Государственный астрономический институт им. П. К. Штернберга, Московский государственный университет им. М. В. Ломоносова
Russian Federation


References

1. J. F. J. van den Brand e. a. Einstein Telescope site selection. Jornal of Physics: Conference Series. 2010. V. 203. P. 012076.

2. Hild S., Chelkowski S., Freise A. Pushing towards the ET sensitivity using “conventional” technology. 2008. arXive: 0810.0604v2.

3. Kuroda K. e. a. Prog. Theor. Phys. Suppl. 2006. V. 163. P. 54.

4. Arai K. e. a. Reduction of Thermal Fluctuations in a Cryogenic Laser Interferometric Gravitational Wave Detector. // Phys Rev. Lett. 2012. V. 108. P. 141101.

5. Gusev A.V e. a. Reception frequency bandwidth of a gravitational resonant detector with optical readout. // Classical and Quantum Gravity. 2008. V. 25 (5). P. 055006.

6. Punturo M. e. a. Classical and Quantum Gravity. 2010. V. 27. 084007; [see also Einstein Telescope design study (Grant Agreement 211743) http://www.et-gw.eu]

7. Bezrukov L. B. e. a. Instruments and Experimental Techniques. 2010. V. 53 (3). P. 423-429.

8. Амамчян Р.Г. и др. Измерительная Техника. 2011. № 1. С. 59-62.

9. Astone P. e. a. Phys. Rev. D. 2007. V. 76. P. 102001.

10. Jack W. Ekin. Experimental Techniques for Low-Temperature Measurements Cryostat Design, Material Properties, and Superconductor Critical-Current Testing National Institute of Standards and Technology. Boulder, USA, 2006.

11. Ventura G. and Risegari L. The Art of Cryogenics Low-Temperature Experimental Techniques. Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition, 2008.

12. White G. K., Meeson P. J. Experimental Techniques in Low-Temperature Physics. UK, Oxford: Oxford University Press, 2002.

13. Weisend J. G. Handbook of Cryogenic Engineering. London: Taylor & Francis Publishers, 1988.

14. Справочник по физико-техническим основам криогеники. / Под ред. М. П. Малкова. М.: Энергия, 1973.


Review

For citations:


 ,  ,  ,   . Izmeritel`naya Tekhnika. 2014;(12):34-38. (In Russ.)

Views: 72


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)