Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Сравнительный анализ коэффициентов истечения критических сопел

Abstract

A comparative and statistical analysis of the escape rates of critical nozzles with a toroidal branch pipe is carried out. It analyzes the main approaches associated with determining the discharge coefficient. The equations of dependences obtained for describing changes of the discharge coefficients of critical nozzles as functions of the Reynolds number are given. On the example of critical Venturi nozzles, factors affecting the accuracy of measuring gas flow are considered.

About the Authors

Ж. Даев
Оренбургский государственный университет; Актюбинский университет им. С. Баишева
Russian Federation


Н. Султанов
Оренбургский государственный университет
Russian Federation


References

1. Герасимов А. П., Иванов В. П., Красавин В. М., Лахов В. М., Раинчик С. В., Семёнова О. К. Область применения сопел Лаваля в расходомерной технике // Измерительная техника. 2005. № 4. С. 48-52.

2. Герасимов А. П., Иванов В. П., Красавин В. М., Лахов В. М., Раинчик С. В., Семёнова О. К. Свойства потоков газа // Измерительная техника. 2005. № 4. С. 40-44.

3. МИ 1538-86. ГСИ. Критические расходомеры. Методика выполнения измерений массового расхода газа.

4. ISO 9300:2005 (E). Measurement of gas flow by means of critical flow Venturi nozzles.

5. Wang C., Ding H., Zhao Y. Influence of wall roughness on discharge coefficient of sonic nozzles // Flow Measurement and Instrumentation. 2014. V. 35. P. 55-62.

6. Arnberg B. T. Review of critical flowmeters for gas flow measurements // Journal of Basic Engineering. 1962. No. 12. P. 447-457.

7. Stratford B. S. The calculation of the discharge coefficient of profiled choked nozzles and optimum profile for absolute air flow measurement // Journal of the royal aeronautical society. 1964. V. 68. P. 237-245.

8. Arnberg B. T., Britton C. L., Seidl W. F. Discharge coefficient correlations for circular Venturi flow meters at critical (sonic) flow // Journal of Fluids Engineering. 1974. No. 2. P. 111-123.

9. Ishibashi M., Takamoto M. Theoretical discharge coefficient of a critical circular-arc nozzle with laminar boundary layer and its verification by measurements using super-accurate nozzles // Flow Measurement and Instrumentation. 2000. V. 11. P. 305-313.

10. Park K. A. Effects of inlet shapes of critical Venturi nozzles on discharge coefficients. Flomeko // 10th IMEKO TC9 Conference on Flow Measurement. 2000. P. 15-19

11. Cruz-Maya J. A., Sanchez-Silva F., Quinto-Diez P. A new correlation to determine the discharge coefficient of a critical Venturi nozzle with turbulent boundary layer // Flow Measurement and Instrumentation. 2006. V. 17. P. 258-266.

12. Choi Y. M., Park K. M., Park S. O. Interference effect between sonic nozzles // Flow Measurement and Instrumentation. 1997. V. 8. P. 113-119.

13. Ishibashi M. Discharge coefficient equation for critical-flow toroidal-throat Venturi nozzles covering the boundary-layer transition regime // Flow Measurement and Instrumentation. 2015. V. 44. P. 107-121.

14. Li C. H., Peng X. F., Wang C. Influence of diffuser angle on discharge coefficient of sonic nozzles for flow-rate measurements // Flow Measurement and Instrumentation. 2010. V. 21. P. 531-537.

15. Ding H., Wang C., Zhao Y. Surface roughness effect on flow measurement of real gas in a critical nozzle // Measurement. 2015. V. 68. P. 82-91.

16. Bignell N., Choi Y. M. Thermal effects in small sonic nozzles // Flow Measurement and Instrumentation. 2002. V. 13. P. 17-22.

17. Steward D.G., Watson J.T.R., Vaidya A.M. Improved critical flow factors and representative equations for four calibration gases // Flow Measurement and Instrumentation. 1999. V. 10. P. 27-41.


Review

For citations:


 ,   . Izmeritel`naya Tekhnika. 2018;(7):51-54. (In Russ.)

Views: 71


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)