Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Многофункциональный виброчастотный измерительный преобразователь силы с цилиндрическим резонатором

Abstract

A mathematical model of a multifunctional vibro-frequency power transducer with an electromagnetic driver and an induction receiver for oscillations of a cylindrical resonator is obtained. Relations are given for the optimal shape of the longitudinal and transverse oscillations of a cylinder of a cylindrical resonator at which the maximum sensitivity to the monitored parameter is reached and the energy expended in excitation of oscillations of this resonator is minimized. The signal-to-noise ratio expressed through the design parameters of the receiver and exciter is obtained and the universal characteristic of the vibration frequency measuring transducer of the frequency converter of the oscillation with a cylindrical cavity resonator.

About the Authors

Ю. Тараненко
Украинский государственный химико-технологический университет
Russian Federation


О. Олейник
Украинский государственный химико-технологический университет
Russian Federation


References

1. Abdallah A., Reichel E. K., Voglhuber-Brunmaier T., Heinisch M., Clara S., Jakoby B. Symmetric mechanical plate resonators for fluid sensing // Sensors and Actuators A: Phys. 2015. V. 232. P. 319-328.

2. Дивин А. Г., Пономарёв С. В., Мозгова Г. В. Методы и средства измерений, испытаний и контроля: учебное пособие. Тамбов: Изд-во ФГБОУ ВПО «ТГТУ», 2012.

3. Oliynyk О., Taranenko Yu., Shvachka A., Chorna O. Development of auto-oscillating system of vibration frequency sensors with mechanical resonator // Eastern-European J. Enterprise Technol. 2017. V. 85. P. 56-60.

4. Malas A., Chatterjee S. Analysis and synthesis of modal and non-modal self-excited oscillations in a class of mechanical systems with nonlinear velocity feedback // J. Sound and Vibration. 2015. V. 334. No. 6. P. 296-318.

5. Malas A., Chatterjee S. Modal self-excitation by nonlinear acceleration feedback in a class of mechanical systems // J. Sound and Vibration. 2016. V. 376. P. 1-17.

6. Hui-Ling Z., Xin-Yin Z. The high precision vibration signal data acquisition system based on the STM32 // Sensors & Transducers. 2014. V. 172. P. 98-104.

7. Xiao-Long W., Lan D., Lei W, Li Hua C. Analysis and experimental concepts of the vibrating wire alignment technique // Chinese Phys. C. 2014. V. 38. No. 11. P. 117010.

8. Arutunian S. G., Bakshetyan K. G., Dobrovolsky N. M., Mailian M. R., Poghosyan L. A., Sinenko I. G., Soghoyan H.E., Vasiniuk I.E., Wittenburg K. Petra proton beam profiling by vibrating wire scanner // Proc. DIPAC. 2005. V. 38. No. 32. P. 181-183.

9. Viman L., Lungu S. Electrical coupled model for two coils vibrating wire transducer // 33rd Intern. Spring Seminar IEEE. Electronics Technology (ISSE), 2010. P. 421-426.

10. Zhang X. M., Liu G. R., Lam K. Y. Vibration analysis of thin cylindrical shells using wave propagation approach // J. Sound and Vibration. 2001. V. 239. No. 3. P. 397-403.

11. Woodfield P. L. Transient analytical solution for the motion of a vibrating cylinder in the Stokes regime using Laplace transforms // J. Fluids and Structures. 2015. V. 54. P. 202-214.

12. Li X. B. Study on free vibration analysis of circular cylindrical shells using wave propagation // J. Sound and Vibration. 2008. V. 311. No. 3-5. P. 311-667.

13. Тараненко Ю. К. Автоколебательная система виброчастотного измерителя плотности жидкости с механическим резонатором // Известия вузов. Сер. Радиоэлектроника. 2006. Т. 49. № 12. С. 29-45.

14. Тараненко Ю. К. Градуювання та повірка поточних віброчастотних вимірювачів щільності з диференційним датчиком // Восточно-Европейский журнал передовых технологий. 2007. Т. 2/2. № 26. С. 41-47.


Review

For citations:


 ,   . Izmeritel`naya Tekhnika. 2018;(7):41-46. (In Russ.)

Views: 70


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)