Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Измерение напряжённости электрических полей с помощью кольцевых резонаторов на базе щелевых волноводов с жидкокристаллическим заполнением

Abstract

In the paper the operation principles of the external electric field sensor based on ring microresonators are described. Microresonators are based on stripline vertical and horizontal slots waveguides with liquid crystal filling. The mode field distribution and dispersion parameters are calculated by using algorithm оn the base the Method of Line. Sensor sensitivity depending on waveguides and microresonators (slot width and position, microresonator radius) structure is analyzed.

About the Authors

И. Гончаренко
Университет гражданской защиты МЧС Беларуси
Russian Federation


В. Рябцев
Университет гражданской защиты МЧС Беларуси
Russian Federation


References

1. Passaro V.M.N., Dell’Olio F., De Leonardis F. Electromagnetic field photonic sensors // Progress in Quantum Electronics. 2006. V. 30. P. 45-73.

2. Li C., Yoshino T. Optical voltage sensor based on electrooptic crystal multiplier // J. Lightwave Technol. 2002. V. 20. P. 843-849.

3. Gutiérrez-Martinez C., Santos-Aguilar J., Ochoa-Valiente R. An all-fiber and integrated optics electric field sensing scheme using matched optical delays and coherence modulation of light // Meas. Sci. Technol. 2007. V. 18. P. 3223-3229.

4. Togo H., Kukutsu N., Shimizu N., Nagatsuma T. Sensitivity-stabilized fiber-mounted electrooptic probe for electric field mapping // J. Lightwave Technol. 2008. V. 26. P. 2700-2705.

5. Bernier M., Gaborit G., Duvillaret L., Paupert A., Lasserre J.L. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes // Appl. Opt. 2008. V. 47. P. 2470-2476.

6. Li C., Reano R. M. Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings // Opt. Express. 2012. V. 20. No. 4. P. 4032-4038.

7. Czapla A., Bock W. J., Wolinski T. R., Mikulic P., Nowinowski-Kruszelnicki E., Dabrowski R. Improving the electric field sensing capabilities of the long-period fiber grating coated with a liquid crystal layer // Opt. Express. 2016. V. 24. No. 5. P. 5662-5673.

8. Mathews S., Farrell G., Semenova Yu. Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements// Appl. Opt. 2011. V. 50. No. 17. P. 2628-2635.

9. Tefelska M., Wolinski T. R., Ertman S., Milenko K., Laczkowski R., Siarkowska A., Domanski A. W. Electric field sensing with photonic liquid crystal fibers based on microelectrodes systems // J. Lightwave Technol. 2015. V. 33. No. 12. P. 2405-2411.

10. Almeida V. R., Xu Q., Barrios C. A., Lipson M. Guiding and confining light in void nanostructure // Opt. Lett. 2004. V. 29. No. 11. P. 1209-1211.

11. Barrios C. A., Gylfason K. B., Sanchez B., Griol A., Sohlström H., Holgado M., Casquel R. Slot-waveguide biochemical sensor // Opt. Lett. 2007. V. 32. No. 21. P. 3080-3082.

12. Passaro V. M. N., Dell’Olio F., Casamassima B., De Leonardis F. Guided-wave optical biosensors // Sensors. 2007. V. 17. P. 508-536.

13. Cheng N.-C., Ma Y.-F., Fu P.-H., Chin C.-C., Huang D.-W. Horizontal slot waveguides for polarization branching control // Appl. Opt. 2015. V. 54. No. 3. P. 436-443.

14. Viphavakit C., Komodromos M., Themistos C., Mohammed W. S., Kalli K., Rahman B. M. A. Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization // Appl. Opt. 2015. V. 54. No. 15. P. 4881-4888.

15. Pfeifle J., Alloatti L., Freude W., Leuthold J., Koos C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding // Opt. Express. 2012. V. 20. No. 14. P. 15359-15376.

16. Гончаренко И. А., Киреенко В. П. Датчик температуры на основе щелевого волновода с жидкокристаллическим заполнением // Измерительная техника. 2013. № 5. С. 27-30.

17. Goncharenko I. A., Kireenko V. P., Marciniak M. Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling // Opt. Eng. 2013. V. 53. No. 7. P. 071802-1-071802-9.

18. Melnikova E. A. Theoretical modeling of orientation effects in liquid crystal layers // Proc. SPIE: 10th Intern. Conf. Nonlinear Optics of Liquid and Photorefractive Crystals (Alushta, 2004). 2005. V. 6023. P. 0D-1-0D-5.

19. Pregla R. The method of lines for the analysis of dielectric waveguide bends // J. Lightwave Technol. 1996. V. 14. No. 4. P. 634-639.

20. Goncharenko I. A., Helfert S. F., Pregla R. Radiation loss and mode field distribution in curved holey fibers // Intern. J. Electronics and Communications. 2005. V. 59. No. 3. P. 185-191.

21. Гончаренко И. А., Конойко А. И., Поликанин А. М. Датчик концентрации жидкостей на основе щелевых волноводных микрорезонаторов // Измерительная техника. 2010. № 5. С. 66-69.


Review

For citations:


 ,   . Izmeritel`naya Tekhnika. 2018;(1):41-45. (In Russ.)

Views: 75


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)