Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Using Richardson extrapolation to improve the accuracy of processing and analyzing empirical data

https://doi.org/10.32446/0368-1025it.2019-2-18-22

Abstract

The article studies the properties of empirical data under random uncertainty. A new approach is proposed to improve the accuracy in problems of constructing the probability density function and estimating its error. The method is based on the application of Richardson extrapolation and the Runge rule for kernel estimates with different smoothing parameters. It is shown that the application of the Runge rule makes it possible to estimate the error of kernel estimates for the probability density function and the values of its second derivative.

About the Author

O. A. Popova
Siberian Federal University
Russian Federation


References

1. Тарасенко Ф. П. Непараметрика. Томск: ТГУ, 1976.

2. Scott R. W. Multivariate density estimation: theory, practice, and visualization. N. Y.: John Wiley & Sons, 2015.

3. Dobronets B. S., Popova O. A. Numerical probabilistic analysis under aleatory and epistemic uncertainty // Reliable Computing. 2014. Т 19. С. 274-289.

4. Dobronets B. S., Popova O. A. Improving the accuracy of the probability density function estimation // Journal of Siberian Federal University, Mathematics and Physics. 2017. Т. 10 (1). С. 16-21.

5. Dobronets B. S., Popova O. A. Improving reliability of aggregation, numerical simulation and analysis of complex systems by empirical data // IOP Conf. Series: Materials Science and Engineering 2018. Т. 354. P. 012006. DOI:10.1088/1757-899X/354/1/012006.

6. Березин И. С., Жидков Н. П. Методы вычислений. Т. 1, 2. М.: Наука, 1966.

7. Marchuk G. I., Shaidurov V. V. Difference methods and their extrapolations. N. Y.: Springer-Verlag, 1983.

8. Zlatev Z., Dimov I., Farago I., Havasi A. Richardson Extrapolation. Practical Aspects and Applications. Walter de Gruyter GmbH, Berlin-Boston, 2018.

9. Asadzadeh M., Schatz A. H., Wendland W. A. New Approach to Richardson Extrapolation in the Finite Element Method for Second Order Elliptic Problems // Mathematics Of Computation. 2009. V. 78. No. 268. P. 1951-1973.

10. Добронец Б. С., Шайдуров В. В. Двусторонние численные методы. Новосибирск: Наука, 1990.

11. Sidi A. Practical Extrapolation Methods. Theory and Applications. N. Y.: Cambridge University Press, 2003.

12. Johnson N. L., Kotz S., Balakrishnan N. Continuous Univariate Distributions, V. 2. 2nd Edition. N. Y.: Wiley, 1995.


Review

For citations:


Popova O.A. Using Richardson extrapolation to improve the accuracy of processing and analyzing empirical data. Izmeritel`naya Tekhnika. 2019;(2):18-22. (In Russ.) https://doi.org/10.32446/0368-1025it.2019-2-18-22

Views: 419


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)