Influence of vessel dimensions on the results of liquid viscosity measurements by the non-contact aerohydrodynamic method
https://doi.org/10.32446/0368-1025it.2025-6-48-55
Abstract
The research is aimed at improving the accuracy of non-contact viscosity measurements in conditions of a limited sample volume of a tested liquid. A non-contact aerodynamic method based on the deformation of the liquid surface by a gas jet is considered and makes it possible to measure viscosity directly in a technological apparatus or container with liquid or in any vessel of arbitrary shape, the dimensions of which exceed the minimum allowable. In order to determine the minimum size of the vessel, the effect of distances from the walls and bottom of a rectangular vessel to the area of the impingement of the jet to the tested liquid on the viscosity measurement results was experimentally investigated. The experiments were performed on a pulsed non-contact device with an inclined aerodynamic impingement (a non-contact aerohydrodynamic viscometer). Additional movable walls and a submerged movable bottom were utilized to change the vessel dimensions. Liquids with viscosity of 0.710 Pa·s (castor oil) and 26.1 Pa·s (epoxy resin) at 25 °C were studied. The angles of aerodynamic impingement were 20° and 50°, and the gas pressure in front of the gas jet outlet varied at two levels – 5.4 and 7.0 kPa. The minimum dimensions of the vessel are determined – length 80 mm, width 40 mm, thickness of the liquid layer 20 mm, at which the additional measurement error of viscosity due to the infl uence of the vessel walls does not exceed 1.5 %. The minimum volume of a liquid sample in a rectangular vessel is 64 ml. The results obtained are useful to employees of chemical analysis laboratories in the chemical, petroleum, electrical and food industries.
About the Authors
A. P. SavenkovRussian Federation
Aleksandr P. Savenkov
Tambov
V. A. Sychev
Russian Federation
Vladislav A. Sychev
Tambov
S. V. Mischenko
Russian Federation
Sergey V. Mischenko
Tambov
References
1. Li Y., Zou Q., Ma L. Effective optimization of measurement accuracy of rotational viscometers based on the double cylindrical perturbation model. Review of Scientifc Instruments, 96(5), 055101 (2025). https://doi.org/10.1063/5.0251999
2. Ding S., Liu Y., Yue M., Xu M., Cao H, Yang Z. Contactless identifi cation of liquid types in thin-walled container using electromechanical impedance of a 1–3 piezoelectric composite sensor. Sensors and Actuators: A. Physical, 388, 116484 (2025). https://doi.org/10.1016/j.sna.2025.116484
3. Mirgorodskaya A. V. The history of the development of the capillary method for measuring kinematic viscosity: from the Lomonosov viscometer to the information-measuring system. Izmeritel’naya Tekhnika, (8), 53–59 (2023). (In Russ.) https://doi.org/10.32446/0368-1025it.2023-8-53-59 ; https://elibrary.ru/ytliok
4. Novoselov A. G., Sorokin S. A., Baranov I. V., Martyushev N. V., Rumiantceva O. N., Fedorov A. A. Comprehensive studies of the processes of the molecular transfer of the momentum, thermal energy and mass in the nutrient media of biotechnological industries. Bioengineering, 9(1), 18 (2022). https://doi.org/10.3390/bioengineering9010018
5. Mir M. A., Tirumkudulu M. S. A viscosity measurement technique for ultra-low sample volumes. Soft Matter, 20(22), 4358–4365 (2024). https://doi.org/10.1039/d4sm00050a
6. Nemade L. S., Patil M. P. Formulation development, optimization, and evaluation of lansoprazole loaded nanosuspension. International Journal of Applied Pharmaceutics, 15(3), 208–219 (2023). https://dx.doi.org/10.22159/ijap.2023v15i3.47327
7. Zhou G., Zhang X., Yan W., Qiu Z. Preparation, performance evaluation and mechanisms of a diatomite-modifi ed starch-based fl uid loss agent. Processes, 13(8), 2427 (2025). https://doi.org/10.3390/pr13082427
8. Chen T., Yang Y., Bing S., Sun Z., Ma B., Yang Z. Study on in situ viscosity model of tight oil and its measurement method. Energy Reports, 8(4), 547–558 (2022). https://doi.org/10.1016/j.egyr.2022.02.003
9. Ushkova T., Kopteva A., Shpenst V., Sutikno T., Jopri M. H. In-line measurement of multiphase fl ow viscosity. Bulletin of Electrical Engineering and Informatics, 11(6), 3609–3616 (2022). https://doi.org/10.11591/eei.v11i6.4856
10. Domostroev A. V., Dem’yanov A. A., Klim O. V., Yudchenko D. A. Comparative studies of continuous vibrational petroleum viscosimeters. Izmeritel’naya Tekhnika, (3), 62–66 (2013). (In Russ.) https://elibrary.ru/rcnzdj
11. Masseni F., Tetti G., Zumbo A., Noé C., Polizzi G., Stumpo L., Ferrero A., Pastrone D. Evaluation of UV-Curable Solid Rocket Propellants’ Properties for Advanced 3D Printing Technologies. Applied Sciences, 15(6), 2933 (2025). https://doi.org/10.3390/app15062933
12. Krishnan S. S. J., Nagarajan P. K. Infl uence of stability and particle shape effects for an entropy generation based optimized selection of magnesia nanofl uid for convective heat fl ow applications. Applied Surface Science, 489, 560–575 (2019). https://doi.org/10.1016/j.apsusc.2019.06.038
13. Savenkov A. P., Mordasov M. M., Sychev V. A. Contactless pneumoelectric fl uid viscosity measurement device. Izmeritel’naya Tekhnika, (9), 43–49 (2020). (In Russ.) https://doi.org/10.32446/0368-1025it.2020-9-43-49 ; https://elibrary.ru/jvxomd
14. Savenkov A. P., Sychev V. A. Model of viscosity measurements by noncontact aerohydrodynamic method. Izmeritel’naya Tekhnika, (11), 57–64 (2022). (In Russ.) https://doi.org/10.3244 6/0368-1025it.2022-11-57-64 ; https://elibrary.ru/fpnxfc
15. Savenkov A. P., Sychev V. A., Mischenko S. V. A study of a non-contact aerohydrodynamic viscometer sensitivity to infl uencing quantities. Instruments, (10), 1–9 (2023). (In Russ.) https://elibrary.ru/UBPLGE
16. Mordasov M. M., Savenkov A. P., Safonova M. E., Sychev V. A. Non-Contact Triangulation Measurement of Distances to Mirror Surfaces. Optoelectronics, Instrumentation and Data Processing, 54(1), 69–75 (2018). https://doi.org/10.3103/S8756699018010119
17. Blinov L. M. Langmuir fi lms. Soviet Physics Uspekhi, 31(7), 623–644 (1988). https://doi.org/10.1070/PU1988v031n07ABEH003573
18. Mischenko S. V., Mordasov M. M., Savenkov A. P., Sychev V. A. Analysis of the infl uence of sizes of a vessel with a liquid on the readings of Brookfi eld viscometer. Izmeritel’naya Tekhnika, (4), 51–5 6 (2020). (In Russ.) https://doi.org/10.32446/0368-1025it.2020-4-51-56 ; https://elibrary.ru/wgrdll.
Supplementary files
Review
For citations:
Savenkov A.P., Sychev V.A., Mischenko S.V. Influence of vessel dimensions on the results of liquid viscosity measurements by the non-contact aerohydrodynamic method. Izmeritel`naya Tekhnika. 2025;74(6):48-55. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-6-48-55
JATS XML





















