

Investigations on the dielectric and ferroelectric characteristics of SBN60 ferroelectric-relaxor thin films on semiconductor substrates in a wide temperature range
https://doi.org/10.32446/0368-1025it.2025-4-14-20
Abstract
Dielectric characteristics, ferroelectric properties, and phase transition temperatures in thin films of ferroelectric-relaxor barium-strontium niobate Sr 0.6Ba0.4Nb2O6 (SBN60) with a tetragonal tungsten bronze structure deposited on a Si(001) semiconductor substrate have been studied by dielectric spectroscopy methods. The films were grown by high-frequency cathode sputtering technique in an oxygen atmosphere. X-ray diffraction analysis has shown that SBN60 films are single-phase, pure and c-oriented (unit cell parameter c = 0.3932 nm), and according to atomic force microscopy, its surface has a uniform relief, does not contain cavities, pores or other surface defects. An approach is proposed which allows determining the permittivity and its dispersion, the temperatures corresponding to interphase transitions. It is based on measuring the high-frequency capacitance-voltage characteristics of the metal/ SBN60/Si(001) capacitor structure at a fixed temperature (in the range 83–473 K). In particular, it is shown that the Burns temperature in the analyzed thin film is 383 K. The applicability of this approach to the metal-ferroelectric-semiconductor heterostructures properties analyses is discussed.
Keywords
About the Authors
N. V. MakinyanRussian Federation
Norayr V. Makinyan
Rostov-on-Don
A. V. Pavlenko
Russian Federation
Anatoly V. Pavlenko
Rostov-on-Don
P. V. Popov
Russian Federation
Petr V. Popov
Moscow
V. A. Bobylev
Russian Federation
Vyacheslav A. Bobylev
Rostov-on-Don
Ya. Yu. Matyash
Russian Federation
Yana Yu. Matyash
Rostov-on-Don
D. V. Stryukov
Russian Federation
Daniil V. Stryukov
Rostov-on-Don
References
1. Gritsenko V. A., Islamov D. R. Physics of dielectric films: charge transport mechanisms and physical foundations of memory devices. Parallel, Novosibirsk (2017). (In Russ.) https://www.elibrary.ru/otdnyb
2. Vorotilov K. A., Sigov A. S. Ferroelectric memory. Physics of the Solid State, 54, 894–899 (2012). https://doi.org/10.1134/S1063783412050460
3. Pavlenko A. V., Zinchenko S. P., Stryukov D. V., Kovtun A. P. Nanoscale films of barium-strontium niobate: features of high-frequency discharge plasma production, structure and physical properties. UNC RAN, Rostov-on-Don (2022). (In Russ.)
4. Shvartsman V. V., Lupascu D. C. Lead-Free Relaxor Ferroelectrics. Journal of the American Ceramic Society, 95, 1–26 (2012). https://doi.org/10.1111/j.1551-2916.2011.04952.x
5. Ivanov S., Kostsov E. G. Uncooled thermally uninsulated array element based on thin strontium barium niobate pyroelectric films. IEEE Sensors Journals, 20, 9011–9017 (2020). https://doi.org/10.1109/JSEN.2020.2987633
6. Sigov A. S., Mishina E. D., Mukhortov V. M., Thin ferroelectric films: preparation and prospects of integration. Physics of the Solid State, 52(4), 762–770 (2010). https://doi.org/10.1134/S1063783410040153 ; https://www.elibrary.ru/mxhbuv
7. Mulaosmanovic H., Breyer E. T, Dünkel S. et al. Ferroelectric field-effect transistors based on HfO2: a review. Nanotechnology, 32, 502002 (2021). https://doi.org/10.1088/1361-6528/ac189f
8. Yoon I., Chang M., Ni K. et al. A FerroFET-based in-memory processor for solving distributed and iterative optimizations via least-squares method. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 5, 132–141 (2019). https://doi.org/10.1109/JXCDC.2019.2930222
9. Pavlenko A. V., Ilyina T. S., Kiselev D. A., Stryukov D. V. Phase composition, crystal structure, dielectric and ferroelectric properties of Ba2NdFeNb4O15 thin films grown on a Si(001) substrate in an oxygen atmosphere. Physics of the Solid State, 65(4), 572 (2023). http://dx.doi.org/10.21883/PSS.2023.04.55997.13
10. Zhang J. J., Sun J., Zheng X. J. A model for the C-V characteristics of the metal-ferroelectric-insulator-semiconductor structure. Solid-state electronics, 53, 170–175 (2009). https://doi.org/10.1016/j.sse.2008.10.012 ; https://www.elibrary.ru/kplmmt
11. Gurtov V. A. Solid-state electronics: Textbook. PetrGU, Petrozavodsk (2004). (In Russ.) https://www.elibrary.ru/qmofjd
12. Pavlenko A. V., Stryukov D. V., Kovtun A. P. et al. Synthesis, structure, and dielectric characteristics of Sr0.61Ba0.39Nb2O6 single crystals and thin films. Physics of the Solid State, 61, 244–248 (2019). https://doi.org/10.1134/S1063783419020185 ; https://www.elibrary.ru/hwwkmq
13. Makinyan N. V., Pavlenko A. V. Dielectric characteristics of heteroepitaxial Sr0.60Ba0.40Nb2O6 thin films grown on a Pt(001)/MgO(001) substrate. Physics of the Solid State, 65(11), 1957–1963 (2023). (In Russ.) https://doi.org/10.61011/FTT.2023.11.56550.192 ; https://www.elibrary.ru/huffgb
Supplementary files
Review
For citations:
Makinyan N.V., Pavlenko A.V., Popov P.V., Bobylev V.A., Matyash Ya.Yu., Stryukov D.V. Investigations on the dielectric and ferroelectric characteristics of SBN60 ferroelectric-relaxor thin films on semiconductor substrates in a wide temperature range. Izmeritel`naya Tekhnika. 2025;74(4):14-20. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-4-14-20