

Frequency range converter modules 50–178.4 GHz for vector network analyzers
https://doi.org/10.32446/0368-1025it.2025-4-55-63
Abstract
Modern research and development in the microwave frequency range require metrological-grade measuring equipment with a dynamic range exceeding 100 dB and the ability to adjust output power. VECTORseries frequency range converter modules for vector network analyzers have been developed and manufactured. The VECTOR frequency range converter modules operate in the following frequency ranges: 50–75; 53.57–78.33; 75–110; 78.33–118.1; 110–170; 118.1–178.4 GHz. The structural diagram of the developed frequency range converter modules is described. The frequency range converter modules provide extension of the upper frequency limit of the vector network analyzer when used for measurements of complex transmission and reflection coefficients (scattering matrix elements) of multiport devices. A vector network analyzer with connected frequency range converter modules forms a unified measurement system. Investigation of the VECTOR-series frequency range converter modules characteristics has shown that the VECTOR modules for frequency ranges 50–75; 75–110; 110–170 GHz have typical output power and operational dynamic range of 15 dBm (31.6 mW) and 125 dB; 11 dBm (12.6 mW) and 120 dB; 1 dBm (1.3 mW) and 110 dB, respectively. The developed frequency range converter modules are compatible with Russian vector network analyzers as well as with foreign counterparts from Rohde&Schwarz GmbH&Co KG (Munich, Germany) and Keysight Technologies (Santa Rosa, USA). A comparative analysis of the presented frequency range converter modules with the modules from Virginia Diodes (Charlottesville, USA), specifically the WR15VNA series, and from Ceyear Technologies, series 3643NA (Qingdao, China), shows that the output power and dynamic range of the developed devices are on par with those of foreign equivalents. The main application areas of vector network analyzers with frequency range converter modules include testing, tuning, and development of various radio frequency devices in industrial production environments and laboratories, including automated measuring stands.
About the Authors
V. M. MuravevRussian Federation
Viacheslav M. Muravev
Chernogolovka, Moscow region
A. M. Zarezin
Russian Federation
Alexey M. Zarezin
Chernogolovka, Moscow region
A. A. Titenko
Russian Federation
Anatoliy A. Titenko
Chernogolovka, Moscow region
V. D. Bobova
Russian Federation
Vasilina D. Bobova
Chernogolovka, Moscow region
M. V. Sinogin
Russian Federation
Maxim V. Sinogin
Chelyabinsk
I. V. Kukushkin
Russian Federation
Igor V. Kukushkin
Chernogolovka, Moscow region
S. A. Zaostrovnyh
Russian Federation
Sergey A. Zaostrovnyh
Chelyabinsk
References
1. Maiwald T., Li T., Hotopan G.-R. et al. A review of integrated systems and components for 6G wireless communication in the D-band. Proc. IEEE, 111(3), 220–256 (2023). https://doi.org/10.1109/JPROC.2023.3240127 ; https://elibrary.ru/vntccf
2. Filippi A., Martinez V., Vlot M. Spectrum for automotive radar in the 140GHz band in Europe. Proc. 19th European Radar Conference, 1–4 (2022). https://doi.org/10.23919/EuRAD54643.2022.9924643
3. Braun T. T., Schöpfel J., Kwiatkowski P., Schweer C., Pohl N. Expanding the capabilities of automotive radar for bicycle detection with harmonic RFID tags at 79/158GHz. IEEE Transactions on Microwave Theory and Techniques, 71(1), 320–329 (2023). https://doi.org/10.1109/TMTT.2022.3219541 ; https://elibrary.ru/jnzcoz
4. Sheen D. M., McMakin D. L., Hall T. E., Severtsen R. H. Active millimeter-wave standoff and portal imaging techniques for personnel screening. 2009 IEEE Conference on Technologies for Homeland Security, 440–447 (2009). https://doi.org/10.1109/THS.2009.5168070
5. Tzydynzhapov G., Gusikhin P., Muravev V., Dremin A., Nefyodov Y., Kukushkin I. New Real-Time Sub-Terahertz Security Body Scanner. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 632–641 (2020). https://doi.org/10.1007/s10762-020-00683-5 ; https://elibrary.ru/ahfkhc
6. Markelz A., Whitmire S., Hillebrecht J., Birge R. THz time domain spectroscopy of biomolecular conformational modes. Physics in Medicine and Biology, 47(21), 3739–3805 (2002). https://doi.org/10.1088/0031-9155/47/21/318 ; https://elibrary.ru/bfjdzv
7. Haring Bolivar P., Bruchereifer M., Nagel M., Kurz H., Bosserhoff A., Buttner R. Label-free probing of genes by timedomain terahertz sensing. Physics in Medicine and Biology, 47(21), 3815–3821 (2002). https://doi.org/10.1088/0031-9155/47/21/320 ; https://elibrary.ru/bfjeap
8. Nagel M., Haring Bolivar P., Brucherseifer M., Kurz H. Integrated THz technology for label-free genetic diagnostics. Applied Physics Letters, 80(1), 154–156 (2002). https://doi.org/10.1063/1.1428619
9. Thrane L., Jacobsen R., Uhd Jepsen P., Keiding S. THz reflection spectroscopy of liquid water. Chemical Physics Letters, 240(4), 330–333 (1995). https://doi.org/10.1016/0009-2614(95)00543-D ; https://elibrary.ru/xrjptj
10. Woodward R. H., Wallace V. P., Pye R. J. Terahertz pulse imaging in reflection geometry of skin tissue using time domain analysis techniques. Proc. SPIE, 4625, 160–169 (2002). https://doi.org/10.1117/12.469785
11. Zinov’ev N., Fitzgerald A., Strafford S., Wood D., Carmichael F., Miles R., Smith M., Chamberlain J. Identification of tooth decay using terahertz imaging and spectroscopy. Twenty Seventh International Conference on Infrared and Millimeter Waves (2002). http://doi.org/10.1109/ICIMW.2002.1076060
12. Knobloch P., Schildknecht C., Kleine-Ostmann T. et al. Medical THz imaging: An investigation of histo-pathological samples. Physics in Medicine and Biology, 47(21), 3875–3884 (2002). http://doi.org/10.1088/0031-9155/47/21/327 ; https://elibrary.ru/bfjedh
13. Philippov M. V., Makhmutov V. S., Razumeyko M. V. Scientific equipment for the Sun-Terahertz space experiment: study of the temperature effect in the Golay cell. Izmeritel ,naya Tekhnika, 73(3), 20–25 (2024). (In Russ.) https://doi.org/10.32446/0368-1025it.2024-3-20-25 ; https://elibrary.ru/qnblrd
14. Bondarenko A. S., Borovkov A. S., Malai I. M., Semenov V. A. State primary standard of units of complex reflection coefficient and complex transmission coefficient in waveguide paths in the frequency range from 2.14 to 178.4 GHz GET 219-2024. Izmeritel'naya Tekhnika, 73(7), 4–13 (2024). (In Russ.) https://doi.org/10.32446/0368-1025it.2024-7-4-13 ; https://elibrary.ru/lvyhjz
15. Terent’ev A. A., Lupanova E. A., Nikulin S. M., Petrov V. V. Monitoring the parameters of printed strip lines in the microwave range of electromagnetic waves. Izmeritel`naya Tekhnika, 73(6), 57–63 (2024). (In Russ.) https://doi.org/10.32446/0368-1025it.2024-6-55-61 ; https://elibrary.ru/diapsy
16. Koudel’nyi A. V., Malai I. M., Perepelkin V. A., Chirkov I. P. The working standard of the unit of power of electromagnetic waves in the frequency range from 37,5 to 220 GHz. Izmeritel`naya Tekhnika, (1), 52–57 (2020). (In Russ.) https://doi.org/10.32446/0368-1025it.2020-1-53-58 ; https://elibrary.ru/maahqq
17. Koudel’nyi A. V., Malai I. M., Matveev A. I., Perepelkin V. A., Chirkov I. P. State primary standard of the unit of power of electromagnetic oscillations in the frequency range from 37.5 to 118.1 GHz GET 167-2021. Izmeritel’naya Tekhnika, (6), 3–8 (2022). (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-3-8 ; https://elibrary.ru/qchujo
18. Korshunov V. A., Yashin A. V. Domestic radio instrument engineering. Part 3. On urgent measures for the innovative development of domestic radio instrument engineering and the park of measuring instruments. Sensors and Systems, (5(180)), 23–30 (2014). (In Russ.) https://elibrary.ru/qkunez
19. Pavlovskii O. P., Chernogubov A. V., Malter I. G. The construction of a new generation of millimeter band radio measuring equipment. Izmeritel’naya Tekhnika, (11), 58–64 (2010). (In Russ.) https://elibrary.ru/navmml
Supplementary files
Review
For citations:
Muravev V.M., Zarezin A.M., Titenko A.A., Bobova V.D., Sinogin M.V., Kukushkin I.V., Zaostrovnyh S.A. Frequency range converter modules 50–178.4 GHz for vector network analyzers. Izmeritel`naya Tekhnika. 2025;74(4):55-63. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-4-55-63