Early diagnosis of renal cell carcinoma: use of a nanowire biosensor for detection of small nucleolar ribonucleic acid SNORA77 in patient’s blood
https://doi.org/10.32446/0368-1025it.2025-5-77-87
Abstract
Renal cell carcinoma is the most common form of kidney cancer (more than 90 % of all oncological pathologies of the kidney). At an early stage of development, renal cell carcinoma can be asymptomatic, and this significantly complicates its diagnosis. Commonly used methods for diagnosing renal cell carcinoma do not allow for timely detection of this disease at early stages, thus it is necessary to develop effective and non-invasive methods for its diagnosis using biological macromolecules detectable in blood – biomarkers of this type of cancer. Small nucleolar RNAs are of great interest as such biological macromolecules. In this study, a SiNW biosensor was designed and manufactured for the direct detection of small nucleolar RNA SNORA77 in the blood, associated with renal cell carcinoma. The key element of the SiNW biosensor developed is a nanowire chip based on “siliconon- insulator” structures. The chip is manufactured using a technology similar to Smart Cut, and contains an array of silicon nanowires with n-type conductivity, on whose surface DNA oligonucleotide probes are covalently immobilized. To ensure the specificity of the analysis, the nucleotide sequence of the immobilized DNA probes is complementary to the target sequence of the small nucleolar RNA SNORA77. Purified buffer solutions containing various concentrations of synthetic DNA oligonucleotides, whose sequence is similar to the target detectable sequence of SNORA77, have been analyzed. Using the SiNW biosensor developed, the detection limit of SNORA77 was determined to be approximately 10–17 M. The SiNW biosensor has allowed us to detect an elevated level of SNORA77 in a sample isolated from the blood plasma of a patient with confirmed diagnosis of renal cell carcinoma in comparison with that in a control sample isolated from the plasma of a patient with a non-oncologic disease. The results of the study will be useful for further development of early diagnostic systems for renal cell carcinoma.
Keywords
About the Authors
Yu. D. IvanovRussian Federation
Yuri D. Ivanov, Doctor of Biological Sciences, Professor, Head of Laboratory of Nanobiotechnology
Moscow
K. V. Goldaeva
Russian Federation
Kristina V. Goldaeva, Junior Scientist
Moscow
E. D. Nevedrova
Russian Federation
Ekaterina D. Nevedrova, Junior Scientist, Laboratory of Nanobiotechnology
Moscow
A. V. Vinogradova
Russian Federation
Angelina V. Vinogradova, Junior Scientist, Laboratory of Nanobiotechnology
Moscow
A. N. Ableev
Russian Federation
Alexander N. Ableev, Leading Engineer, Laboratory of Nanobiotechnology
Moscow
I. D. Shumov
Russian Federation
Ivan D. Shumov, Ph.D. in Biology, Scientist, Laboratory of Nanobiotechnology
Moscow
A. F. Kozlov
Russian Federation
Andrey F. Kozlov, Leading Engineer, Institute of Biomedical Chemistry
Moscow
S. I. Kapustina
Russian Federation
Svetlana I. Kapustina, Laboratory Assistant, Institute of Biomedical Chemistry
Moscow
O. N. Afonin
Russian Federation
Oleg N. Afonin, Ph.D. in Technics, Scientist, Laboratory of Nanobiotechnology
Moscow
V. P. Popov
Russian Federation
Vladimir P. Popov, D.Sc., Head of the Laboratory of Physical Fundamentals of Silicon Materials Science
Novosibirsk
A. V. Glukhov
Russian Federation
Nikolay E. Kushlinskii, Deputy General Director for Scientific Affairs
Novosibirsk
N. E. Kushlinskii
Russian Federation
Nikolay E. Kushlinskii, Doctor of Med. Sci., Professor, Academician of the Russian Academy of Sciences, Scientific director of the clinical diagnostic laboratory of the of the consultative and diagnostic center
Moscow
I. S. Stilidi
Russian Federation
Ivan S. Stilidi, Academician of the Russian Academy of Sciences, D.Sc., Professor, Director
Moscow
Z. Z. Mamedli
Russian Federation
Vsevolod B. Matveev, D.Sc., Associate Professor, Head of the Department of Abdominal Oncology No. 3 (coloproctology)
Moscow
D. V. Enikeev
Russian Federation
Dmitry V. Enikeev, D.Sc., Professor
Moscow
N. N. Burundaeva
Russian Federation
Natalia V. Burundaeva
Moscow
V. A. Konev
Russian Federation
Vladimir A. Konev, Ph.D. in Medical Sciences, Associate Professor of Department of Infectious Diseases in Children, Faculty of Pediatrics
Moscow
O. B. Kovalev
Russian Federation
Oleg B. Kovalev, Doctor of Medical Sciences, Professor of Department of Infectious Diseases in Children, Faculty of Pediatrics
Moscow
V. Y. Tatur
Russian Federation
Vadim Yu. Tatur, Executive Director
Moscow
V. S. Ziborov
Russian Federation
Vadim S. Ziborov, Ph.D., Senior Scientist, Laboratory of Shock-Wave Impacts
Moscow
L. I. Grishin
Russian Federation
Leonid I. Grishin, Scientist, Laboratory of Shock-Wave Impacts
Moscow
A. Y. Dolgoborodov
Russian Federation
Alexander Yu. Dolgoborodov, D.Sc., Head of Laboratory of Shock-Wave Impacts
Moscow
O. F. Petrov
Russian Federation
Oleg F. Petrov, Academician of the Russian Academy of Sciences, D.Sc., Director
Moscow
S. V. Novikov
Russian Federation
Sergey V. Novikov, Ph.D. in Technics, Deputy General Director, Associate Printing-and-Publication Centre Technosphera
Moscow
E. S. Yushkov
Russian Federation
Evgeniy S. Yushkov, Ph.D. in Technics, Associate Professor of Department No. 71
Moscow
A. I. Archakov
Russian Federation
Alexander I. Archakov, Academician of the Russian Academy of Sciences, D.Sc., Professor
Moscow
References
1. Tran J., Ornstein M. C. Clinical review on the management of metastatic renal cell carcinoma. JCO Oncology Practice, 18(3), 187–196 (2022). https://doi.org/10.1200/OP.21.00419
2. Hsieh J. J. et al. Renal cell carcinoma. Nature Reviews Disease Primers, 3(1), 1–19 (2017). https://doi.org/10.1038/nrdp.2017.9
3. Ljungberg B., Purdue M. P., Signoretti S. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. European Urology, 82(4), 399–410 (2022). https://doi.org/10.1016/j.eururo.2022.03.006
4. Sung H., Ferlay J., Siegel R. L. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
5. Bosma N. A., Warkentin M. T., Gan C. L et al. Effi cacy and safety of fi rst-line systemic therapy for metastatic renal cell carcinoma: a systematic review and network meta-analysis. European Urology Open Science, 37, 14–26 (2022). https://doi.org/10.1016/j.euros.2021.12.007
6. Tenold M., Ravi P., Kumar M. et al. Current approaches to the treatment of advanced or metastatic renal cell carcinoma. American Society of Clinical Oncology Educational Book, 40, 187–196 (2020). https://doi.org/10.1200/EDBK_279881
7. Motzer R. J., Bander N. H., Nanus D. M. Renal-cell carcinoma. New England Journal of Medicine, 335(12), 865–875 (1996). https://doi.org/10.1056/NEJM199609193351207
8. Gibbons R. P., Montie J. E., Correa Jr. R. J. et al. Manifestations of renal cell carcinoma. Urology, 8(3), 201–206 (1976). https://doi.org/10.1016/0090-4295(76)90366-6
9. McLaughlin J. K., Lipworth L., Tarone R. E. Epidemiologic aspects of renal cell carcinoma. Seminars in oncology. WB Saunders, 33(5), 527–533 (2006). https://doi.org/10.1053/j.seminoncol.2006.06.010
10. Padala S. A., Barsouk A., Thandra K. C. et al. Epidemiology of renal cell carcinoma. World Journal of Oncology, 11(3), 79 (2020). https://doi.org/10.14740/wjon1279
11. Wein A. J., Barsouk A., etc. Campbell-Walsh Urology, 11th ed. Elsevier Health Sciences, Philadelphia (2016).
12. Vasudev N. S., Wilson M., Stewart G. D. et al. Challenges of early renal cancer detection: symptom patterns and incidental diagnosis rate in a multicentre prospective UK cohort of patients presenting with suspected renal cancer. BMJ Open, 10(5), e035938 (2020). https://doi.org/10.1136/bmjopen-2019-035938
13. Wajahat M., Bracken C. P., Orang A. Emerging functions for snoRNAs and snoRNA-derived fragments. International Journal of Molecular Sciences, 22(19), 10193 (2021). https://doi.org/10.3390/ijms221910193
14. Huang Z., Du Y., Wen J, et al. SnoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discovery, 8(1), 259 (2022). https://doi.org/10.1038/s41420-022-01056-8
15. Lu B., Chen X., Liu X. et al. C/D box small nucleolar RNA SNORD104 promotes endometrial cancer by regulating the 2ʹ-O-methylation of PARP1. Journal of Translational Medicine, 20(1), 618 (2022). https://doi.org/10.1186/s12967-022-03802-z
16. Chow R. D., Chen S. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene, 37(50), 6442–6462 (2018). https://doi.org/10.1038/s41388-018-0420-z
17. Mannoor K., Liao J., Jiang F. Small nucleolar RNAs in cancer. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer, 1826(1), 121–128 (2012). https://doi.org/10.1016/j.bbcan.2012.03.005
18. Yang S., Rothman R. E. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases, 4(6), 337–348 (2004). https://doi.org/10.1016/S1473-3099(04)01044-8
19. Ro S., Park C., Jin J. et al. A PCR-based method for detection and quantifi cation of small RNAs. Biochemical and Biophysical Research Communications, 351(3), 756–763 (2006). https://doi.org/10.1016/j.bbrc.2006.10.105
20. Yang T., Zhang M., Zhang N. Modifi ed Northern blot protocol for easy detection of mRNAs in total RNA using radiolabeled probes. BMC Genomics, 23(1), 66 (2022). https://doi.org/10.1186/s12864-021-08275-w
21. Ivanov Y. D., Romanova T.S., Malsagova K.A. et al. Use of silicon nanowire sensors for early cancer diagnosis. Molecules, 26(12), 3734 (2021). https://doi.org/10.3390/molecules26123734
22. Ambhorkar P., Wang Z., Ko H. et al. Nanowire-based biosensors: from growth to applications. Micromachines, 9(12), 679 (2018). https://doi.org/10.3390/mi9120679
23. Kim K., Park C., Kwon D. et al. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosensors and Bioelectronics, 77, 695–701 (2016). https://doi.org/10.1016/j.bios.2015.10.008
24. Ivanov Y. D., Malsagova K. A., Pleshakova T. O., et al. Aptamer-Sensitized nanoribbon biosensor for ovarian cancer marker detection in plasma. Chemosensors, 9(8), 222 (2021). https://doi.org/10.3390/chemosensors9080222
25. Ivanov Y., Pleshakova T., Malsagova K. et al. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors, 19(23), 5248 (2019). https://doi.org/10.3390/s19235248
26. Ivanov Y. D., Malsagova K. A., Popov V. P. et al. Nanoribbon-based electronic detection of a glioma-associated circular miRNA. Biosensors, 11(7), 237 (2021). https://doi.org/10.3390/bios11070237
27. Ivanov Y. D., Nevedrova E. D., Vinogradova A. V. et al. Detection of colorectal cancer associated circular RNAs hsa_circ_0031263, hsa_circ_0072715, and hsa_circ_0136666 in plasma with nanowire chips. Almanac of Clinical Medicine, 52(3), 120–131 (2024). (In Russ.)]. https://doi.org/10.18786/2072-0505-2024-52-016
28. Patolsky F., Zheng G., Hayden O. et al. Electrical detection of single viruses. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14017–14022 (2004). https://doi.org/10.1073/pnas.0406159101
29. Malsagova K. A., Pleshakova T. O., Kozlov A. F. et al. Detection of infl uenza virus using a SOI-nanoribbon chip, based on an N-type fi eld-effect transistor. Biosensors, 11(4), 119 (2021). https://doi.org/10.3390/bios11040119
30. Popov V. P., Antonova A. I., Frantsuzov P. A. et al. Properties of silicon-on-insulator structures and devices. Semiconductors, 35, 1030–1037 (2001). https://doi.org/10.1134/1.1403567
31. Ivanov Y., Pleshakova T., Malsagova K. et al. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors, 19(23), 5248 (2019). https://doi.org/10.3390/s19235248
32. Mattson G., Conklin E., Desai S. et al. A practical approach to crosslinking. Molecular Biology Reports, 17, 167–183 (1993). https://doi.org/10.1007/BF00986726
33. Stern E., Wagner R., Sigworth F. J. et al. Importance of the Debye screening length on nanowire fi eld effect transistor sensors. Nano Letters, 7(11), pp. 3405–3409 (2007). https://doi.org/10.1021/nl071792z
34. Laborde C., Pittino F., Verhoeven H. A. et al. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nature Nanotechnology, 10(9), pp. 791–795 (2015). https://doi.org/10.1038/nnano.2015.163
35. Namdari P., Daraee H., Eatemadi A. Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Research Letters, 11, 1–16 (2016). https://doi.org/10.1186/s11671-016-1618-z
36. Zhang H., Kikuchi N., Ohshima N. et al. Design and fabrication of silicon nanowire-based biosensors with integration of critical factors: toward ultrasensitive specifi c detection of biomolecules. American Chemical Society Applied Materials and Interfaces, 12(46), 51808–51819 (2020). https://doi.org/10.1021/acsami.0c13984
37. Rissin D. M., Kan C. W., Campbell T. G. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotechnology, 28(6), 595–599 (2010). https://doi.org/10.1038/nbt.1641
38. Banerjee D., Tateishi-Karimata H., Ohyama T. et al. Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Research, 48(21), 12042–12054 (2020). https://doi.org/10.1093/nar/gkaa572
39. SantaLucia J., Hicks D. The thermodynamics of DNA structural motifs. Annual Review of Biophysics, 33, 415–440 (2004). https://doi.org/10.1146/annurev.biophys.32.110601.141800
Supplementary files
Review
For citations:
Ivanov Yu.D., Goldaeva K.V., Nevedrova E.D., Vinogradova A.V., Ableev A.N., Shumov I.D., Kozlov A.F., Kapustina S.I., Afonin O.N., Popov V.P., Glukhov A.V., Kushlinskii N.E., Stilidi I.S., Mamedli Z.Z., Enikeev D.V., Burundaeva N.N., Konev V.A., Kovalev O.B., Tatur V.Y., Ziborov V.S., Grishin L.I., Dolgoborodov A.Y., Petrov O.F., Novikov S.V., Yushkov E.S., Archakov A.I. Early diagnosis of renal cell carcinoma: use of a nanowire biosensor for detection of small nucleolar ribonucleic acid SNORA77 in patient’s blood. Izmeritel`naya Tekhnika. 2025;74(5):77-87. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-5-77-87





















