

Determination of computer-generated hologram universal quantization method for optical image reconstruction
https://doi.org/10.32446/0368-1025it.2025-2-70-77
Abstract
The problem of optical reconstruction of object images using display of quantized computer-generated holograms on a high-speed digital micromirror device is considered. The quantization of light distributions is widely used for information storage, transmission, processing and compression. To determine the most universal hologram quantization method, four iterative, four noniterative quantization methods, and two methods proposed earlier by the authors of this paper and based on noniterative analysis of the intensity distribution histogram, are investigated. The processing (quantization) rate and quality of images optically reconstructed with computer-generated holograms were analyzed for the methods. The holograms were displayed on a digital micromirror device. Object images were reconstructed in laser light. The quality of reconstruction was assessed using quality metrics such as structural similarity index, correlation coefficient and speckle contrast. It was found that the quality of reconstructed images for the histogram methods is higher by 19 % compared to non-iterative methods and by 15 % compared to resource-intensive iterative methods. The rate of hologram quantization by the developed histogram methods is an order of magnitude higher than the rate of iterative methods. Joint accounting of relative intensity and the specifi ed quality metrics is realized by calculation of the target function. The target function of histogram methods exceeds its values of non-iterative and iterative methods by 5 and 2 %, respectively. The obtained results demonstrate the advantages of the histogram methods (high quality of quantization and little time of image processing), in comparison with the other ones for image reconstruction from binary holograms. Thus the histogram quantization methods are recommended for optical reconstruction of volumetric scenes, compression of holographic data, and high-speed modulation of light fi elds.
Keywords
About the Authors
A. S. OvchinnikovRussian Federation
Andrey S. Ovchinnikov
Moscow
A. A. Volkov
Russian Federation
Anton A. Volkov
Moscow
A. A. Kerov
Russian Federation
Andrey A. Kerov
Moscow
A. V. Shifrina
Russian Federation
Anna V. Shifrina
Moscow
E. K. Petrova
Russian Federation
Elizaveta K. Petrova
Moscow
P. A. Cheremkhin
Russian Federation
Pavel A. Cheremkhin
Moscow
References
1. He Z., Sui X., Jin G., Chu D., Cao L. Optimal quantization for amplitude and phase in computer-generated holography. Optics Express, 29(1), 119 (2021). https://doi.org/10.1364/oe.414160
2. Liang C., Wang J., Huang T., Dai Q., Li Z., Yu S., Li G., Zheng G. Structural-color meta-nanoprinting embedding multidomain spatial light fi eld information. Nanophotonics, 13(9), 1665–1675 (2024). https://doi.org/10.1515/nanoph-2024-0019
3. Kumar A., Nirala A. K. Surface topographic characterization of optical storage devices by Digital Holographic Microscopy. Micron, 170, 103459 (2023). https://doi.org/10.1016/j.micron.2023.103459
4. Evtikhiev N. N., Rodin V. G., Savchenkova E. A. et al. Adaptive iterative method of selecting weight coefficients for digital hologram binarization using error diffusion. Measurement Techniques, 65(6), 432–437 (2022). https://doi.org/10.1007/s11018-022-02101-9
5. Zlokazov E. Yu., Minaeva E. D., Rodin V. G. et al. Methods of diffractive optical element generation for rapid, high-quality 3D image formation of objects divided into a set of plane layers. Measurement Techniques, 66(11), 863–871 (2024). https://doi.org/10.1007/s11018-024-02301-5
6. Georgieva A., Belashov A. V., Petrov N. V. Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront. Scientific Reports, 12(1), 1–13 (2022). https://doi.org/10.1038/s41598-022-11443-x
7. Sha J., Wojcik A., Wetherfi eld B., Yu J., Wilkinson T. D. Multi frame holograms batched optimization for binary phase spatial light modulators. Scientific Reports, 14(1), 1–10 (2024). https://doi.org/10.1038/s41598-024-70428-0
8. Lee B., Kim D., Lee S., Chen C., Lee B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Scientific Reports, 12(1), 1–12 (2022). https://doi.org/10.1038/s41598-022-06405-2
9. Hu C., Yang G., Xie H. 3D information transmission of a computer-generated hologram using a quantum compensation hybrid neural network. Optics Express, 32(13), 23736 (2024). https://doi.org/10.1364/oe.509846
10. Shi Z., Wan Z., Zhan Z., Liu K., Liu Q., Fu X. Super-resolution orbital angular momentum holography. Nature Communications, 14(1), 1–13 (2023). https://doi.org/10.1038/s41467-023-37594-7
11. Cheremkhin P. A., Kurbatova E. A. Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/ phase parts. Scientific Reports, 9(1), 1–13 (2019). https://doi.org/10.1038/s41598-019-44119-0
12. Shortt A. E., Naughton T. J., Javidi B. Histogram approaches for lossy compression of digital holograms of threedimensional objects. IEEE Transactions on Image Processing, 16(6), 1548–1556 (2007). https://doi.org/10.1109/TIP.2007.894269
13. Soner B., Ulusoy E., Tekalp A., Urey H. Realizing a low-power head-mounted phase-only holographic display by lightweight compression. IEEE Transactions on Image Processing, 29, 4505–4515 (2020). https://doi.org/10.1109/TIP.2020.2972112
14. Darakis E., Soraghan J. J. Use of fresnelets for phase-shifting digital hologram compression. IEEE Transactions on Image Processing, 15(12), 3804–3811 (2006). https://doi.org/10.1109/TIP.2006.884918
15. Choi K., Kim J., Lim Y., Lee B. Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array. Optics Express, 13(26), 10494 (2005). https://doi.org/10.1364/opex.13.010494
16. Sui X., He Z., Chu D., Cao L. Non-convex optimization for inverse problem solving in computer-generated holography. Light: Science and Applications, 13(1) (2024). https://doi.org/10.1038/s41377-024-01446-w
17. Yang H., He P., Ou K., Hu Y., Jiang Y., Ou X., Jia H., Xie Z., Yuan X., Duan H. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light: Science and Applications, 12(1) (2023). https://doi.org/10.1038/s41377-023-01125-2
18. Yang D., Seo W., Yu H., Kim S. Il, Shin B., Lee C. K., Moon S., An J., Hong J. Y., Sung G., Lee H. S. Diffractionengineered holography: Beyond the depth representation limit of holographic displays. Nature Communications, 13(1), 1–11 (2022). https://doi.org/10.1038/s41467-022-33728-5
19. Li D., Jabbireddy S., Zhang Y., Metzler C., Varshney A. Instant-SFH: Non-Iterative sparse Fourier holograms using perlin noise. Sensors, 24(22), 1–15 (2024). https://doi.org/10.3390/s24227358
20. Ovchinnikov A. S., Krasnov V. V., Cheremkhin P. A., Rodin V. G., Savchenkova E. A., Starikov R. S., Evtikhiev N. N. What binarization method is the best for amplitude inline fresnel holograms synthesized for divergent beams using the direct search with random trajectory technique? Journal of Imaging, 9(2), 28 (2023). https://doi.org/10.3390/jimaging9020028
21. Savchenkova E. A., Ovchinnikov A. S., Rodin, V. G., Starikov R. S., Evtikhiev N. N., Cheremkhin P. A. Adaptive noniterative histogram-based hologram quantization. Optik, 311, 171933 (2024). https://doi.org/10.1016/j.ijleo.2024.171933
22. Kanungo T., Mount D. M., Netanyahu N. S., Piatko C. D., Silverman R., Wu A. Y. An efficient k-means clustering algorithms: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892 (2002). https://doi.org/10.1109/TPAMI.2002.1017616
23. Brunet-Saumard C., Genetay E., Saumard A. K-bMOM: A robust Lloyd-type clustering algorithm based on bootstrap median-of-means. Computational Statistics and Data Analysis, 167, 107370 (2022). https://doi.org/10.1016/j.csda.2021.107370
24. Lloyd S. P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489
25. Max J. Quantizing for minimum distortion. IRE Transactions on Information Theory, 6(1), 7–12 (1960). https://doi.org/10.1109/TIT.1960.1057548
26. Kurbatova E. A., Cheremkhin P. A., Evtikhiev N. N., Krasnov V. V., Starikov S. N. Methods of compression of digital holograms. Physics Procedia, 73, 328–332 (2015). https://doi.org/10.1016/j.phpro.2015.09.150
27. Shortt A. E., Naughton T. J., Javidi B. A companding approach for nonuniform quantization of digital holograms of threedimensional objects. Optics Express, 14(12), 5129 (2006). https://doi.org/10.1364/oe.14.005129
28. Santos M., Horta N., Guilherme J. A survey on nonlinear analog-to-digital converters. Integration, the VLSI Journal, 47(1), 12–22 (2014). https://doi.org/10.1016/j.vlsi.2013.06.001
29. Smith B. Instantaneous companding of quantized signals. Bell System Technical Journal, 36(3), 653–709 (1957). https://doi.org/10.1002/j.1538-7305.1957.tb03858.x
30. Verrier N., Atlan M. Off-axis digital hologram reconstruction: Some practical considerations. Applied Optics, 50(34) (2011). https://doi.org/10.1364/AO.50.00H136
31. Akhter N., Min G., Kim J, Lee B. A comparative study of reconstruction algorithms in digital holography. Optik, 124(17), 2955–2958 (2013). https://doi.org/10.1016/j.ijleo.2012.09.002
Supplementary files
Review
For citations:
Ovchinnikov A.S., Volkov A.A., Kerov A.A., Shifrina A.V., Petrova E.K., Cheremkhin P.A. Determination of computer-generated hologram universal quantization method for optical image reconstruction. Izmeritel`naya Tekhnika. 2025;74(2):70-77. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-2-70-77