

Scientific equipment for the space experiment “Sun-Terahertz”: methods for increasing the frequency selectivity of detectors
https://doi.org/10.32446/0368-1025it.2025-2-78-87
Abstract
The future space experiment «Sun-Terahertz» is aimed at studying the Sun in the unexplored terahertz range, obtaining new data on the terahertz radiation of the Sun, solar active regions and solar fl ares. The scientific equipment being developed is a set of eight detectors sensitive to radiation of various frequencies in the range 0.4–12.0 THz. In this paper, we consider the expected spectral characteristics of scientific equipment and briefl y describe the method of their experimental verification by installing an additional cutoff filter. Two methods for increasing the frequency selectivity of detectors are considered. To assess the sensitivity of the detectors, an experiment was conducted to measure solar radiation using a single-channel model, which is a complete analogue of the detector of scientific equipment with the ability to replace bandpass terahertz filters. Also, a two-axis rotating platform and a cloud sensor were made for the single-channel model. Based on the results of the experimental verification, conclusions were made about the sensitivity of the detectors of scientific equipment and the possibility of improving the characteristics in terms of frequency selectivity. This article may be useful to experimenters involved in spectrometric scientific devices based on optoacoustic converters (Golay cell) and other sensitive elements.
About the Author
M. V. PhilippovRussian Federation
Maxim V. Philippov
Moscow
References
1. Kinnison J., Vaughan R., Hill P., Raouafin., Guo Y., Pinkine N. Parker Solar Probe: A Mission to Touch the Sun. IEEE Aerospace Conference, 1–14 (2020). https://doi.org/10.1109/AERO47225.2020.9172703
2. Russell A. Howard, Angelos Vourlidas, Clarence M. Korendyke, et al. The solar and heliospheric imager (SoloHI) instrument for the solar orbiter mission. Proceedings SPIE Optical Engineering + Applications, 2013, San Diego, California, United States, 8862 (2013). https://doi.org/10.1117/12.2027657
3. Domingo V., Fleck B., Poland A.I. SOHO: The Solar and Heliospheric Observatory. Space Science Reviews, 72, 81–84 (1995). https://doi.org/10.1007/BF00768758
4. Joseph M. Davila, David M. Rust, Victor J. Pizzo, Paulett C. Liewer. Solar Terrestrial Relations Observatory (STEREO). Proceedings SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, 2804 (1996). https://doi.org/10.1117/12.259724
5. Kaufmann P., White S.M., Marcon R. et al. Bright 30 THz impulsive solar bursts. Journal of Geophysical Research (Space Physics), 120, 4155 (2015). https://doi.org/10.1002/2015JA021313
6. Kalinin E. V., Philippov M. V., Makhmutov V. S. et al. A study of the characteristics of a terahertz radiation detector for the Solntse-Terahertz scientific apparatus. Cosmic Research, 59(1), 1–5 (2021). https://doi.org/10.1134/S0010952521010032
7. Kaufmann P., Raullin J.-P., de Castro C. G. G., et al. A New Solar burst spectral component emitting only in the terahertz range. Astrophysical Journal, 603, L121–L124 (2004). https://doi.org/10.1086/383186
8. Kaufmann P., Correia E., Costa J. E. R. et al. Solar burst with millimetre-wave emission at high frequency only. Nature, 313, 380–382 (1985). https://doi.org/10.1038/313380a0
9. Kaufmann P. Submillimeter/IR solar bursts from high energy electrons. Proceedings AIP conference, 374, 379–392 (1996). https://doi.org/10.1063/1.50945
10. Kaufmann P., Costa J. E. R., Castro C. G. G. et al. The new submillimeter-wave solar telescope. Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 439–442 (2001). https://doi.org/10.1109/SBMOMO.2001.1008800
11. Kaufmann P., Castro C. G. G., Makhmutov V. S. et al. Launch of solar coronal mass ejections and submillimeter pulse bursts. Journal of Geophysical Research, 108(A7), 1280 (2003). https://doi.org/10.1029/2002JA009729
12. Krucker S., Castro C. G. G., Hudson H. S., et al. Solar fl ares at submillimeter wavelengths. Astron Astrophys Review, 21, 58 (2013). https://doi.org/10.1007/s00159-013-0058-3
13. Luthi T., Magun A., Miller M. First observation of a solar X-class fl are in the submillimeter range with KOSMA. Astronomy and Astrophysics, 415, 1123–1132 (2004). https://doi.org/10.1051/0004-6361:20034624
14. Makhmutov V. S., Raulin J. P., Castro C. G. G., Kaufmann P., Correia E. Wavelet decomposition of submillimeter solar radio bursts. Solar Physics, 218, 211–220 (2003). https://doi.org/10.1023/B:SOLA.0000013047.26419.33
15. Makhmutov V. S., Kurt V. G., Yushkov B. Yu. et al. Spectral peculiarities of high energy X-ray radiation, gamma radiation, and Submillimeter radio emission in the impulsive phase of a solar fl are. Bulletin of the Russian Academy of Science: Physics, 75(6), 747–750 (2011). https://doi.org/10.3103/S106287381106030X
16. Wedemeyer S., Bastian T., Brajša R. et al. Solar Science with the Atacama Large Millimeter/Submillimeter Array – A New View of Our Sun. Space Science Reviews, 200, 1–73 (2016). https://doi.org/10.1007/s11214-015-0229-9
17. Philippov M. V., Makhmutov V. S., Maksumov O. S. et al. Electronics unit for “Sun-Terahertz” scientific equipment. Instruments and Experimental Techniques, 67(3), 545–553 (2024). https://doi.org/10.1134/S0020441224700829
18. Kvashnin A. A., Logachev V. I., Philippov M. V. et al. Optical system design of the detector for solar terahertz emission measurements. Space engineering and technology, (4(35)), 22–30 (2021). (In Russ.) https://elibrary.ru/siartl
19. Philippov M. V., Makhmutov V. S., Maksumov O. S. et al. A study of thermal effect of resonant optical shutters in space scientific equipment. Space engineering and technology, (1(40)), 8–18 (2023). (In Russ.) https://www.elibrary.ru/wzamjn
20. Philippov M. V., Makhmutov V. S., Logachev V. I., Razumeyko M. V. Preliminary calculation of sensitivity of detectors for the future space experiment “Sun-Terahertz”. Technical Physics, 93(9), 1281 (2023). https://doi.org/10.21883/JTF.2023.09.56226.167-23
21. Philippov M. V., Logachev V. I., Makhmutov V. S., et al. Calculating solar terahertz radiation fluxes recorded by scientific instrumentation detectors onboard the International space station. Space engineering and technology, (2(45)), 68–83 (2024). (In Russ.) https://www.elibrary.ru/xdheun
22. Philippov M. V., Makhmutov V. S., Razumeyko M. V. Scientific equipment for the Sun-Terahertz space experiment: study of the temperature effect in the Golay cell. Measurement Techniques, 67(3), 195–202 (2024). https://doi.org/10.1007/s11018-024-02335-9
23. Philippov M. V., Makhmutov V. S., Razumeyko M. V., et al. Characteristics and issues of calibration of future scientific equipment “Sun-Terahertz”. Advances in Applied Physics, 12(4), 361–370 (2024). https://doi.org/10.51368/2307-4469-2024-12-4-361-370
24. Philippov M. V., Makhmutov V. S., Razumeyko M. V. et al. Method for checking the spectral sensitivity of optical paths of the Sun Terahertz scientific instrumentation in the frequency range 0.4–20 THz. Solar System Research, 59, 26 (2025). https://doi.org/10.1134/S0038094624601683
25. Angström A. On the counter-radiation of the atmosphere. Meteorologische Zeitschrift, 22(6), 761–769 (2013). https://doi.org/10.1127/0941-2948/2013/0550
Supplementary files
Review
For citations:
Philippov M.V. Scientific equipment for the space experiment “Sun-Terahertz”: methods for increasing the frequency selectivity of detectors. Izmeritel`naya Tekhnika. 2025;74(2):78-87. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-2-78-87