

The fine structure constant: a review of measurement results and possible space-time variations
https://doi.org/10.32446/0368-1025it.2025-2-5-12
Abstract
A brief description of the main methods for determining the fine structure constant is given. It is shown that the exact value of the fine structure constant is important for the new International System of Units and for fundamental metrology. Recent measurement results and theoretical calculations of the fine structure constant, as well as its possible space-time variations, are presented. The results of laboratory experiments on the search for long-term variations of the fine structure constant are presented. The astrophysical and cosmological observational data on possible variability of the fine structure constant are presented. The possibility of slightly lower values of the fine structure constant in the remote past as compared to its modern value, as well as the existence of unresolved problems related to possible space-time variations of the fine structure constant and the spread of the results of its precise laboratory measurements, are noted. Despite the absence of experimentally confirmed long-term variations of the fine structure constant at a high level of accuracy, possible practical applications of the results are noted, namely, the construction of an optical frequency standard with high stability and frequency reproduction accuracy based on the ytterbium-171 ion and a laser frequency synthesizer which may replace the caesium frequency standard.
Keywords
About the Authors
K. A. BronnikovRussian Federation
Kirill A. Bronnikov
Moscow
V. D. Ivashchuk
Russian Federation
Vladimir D. Ivashchuk
Moscow
V. V. Khruschov
Russian Federation
Viacheslav V. Khruschov
Moscow
References
1. Bureau International des Poids et Measures. Resolution 1 of the 26th CGPM (2018). On the revision of the International System of Units (SI). https://www.bipm.org/en/committees/cg/cgpm/26-2018/resolution-1
2. Mills I. M., Mohr P. J., Quinn T. J. et al. Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005). Metrologia, 43(3), 227–246 (2006). https://doi.org/10.1088/0026-1394/43/3/006
3. Kononogov S. A. Metrology and fundamental physical constants, Standardinform Publ., Moscow (2008). https://www.elibrary.ru/qjubtt (In Russ.)
4. Will C. M. The Confrontation between General Relativity and Experiment. Living Reviews Relativity, 9, 3 (2006). https://doi.org/10.12942/lrr-2006-3; https://elibrary.ru/mjuucb
5. Martins C. J. A. P. The status of varying constant: a review of the physics, searches and implications. Reports on Progress in Physics, 80(12), 126902 (2017). https://doi.org/10.1088/1361-6633/aa860e; https://elibrary.ru/sduhix
6. Wilczynska M. R., Webb J. K., Bainbridge M. et al. Four direct measurements of the fine-structure constant 13 billion years ago. Science Advances, 6(17), 9672 (2020). https://doi.org/10.1126/sciadv.aay9672; https://www.elibrary.ru/taeakq
7. Safronova M. S., Budker D., DeMille D. et al. Search for new physics with atoms and molecules. Reviews of Modern Physics, 90, 025008 (2018). https://doi.org/10.1103/RevModPhys.90.025008; https://elibrary.ru/glsshb
8. Uzan J.-P. Fundamental constants: from measurement to the universe, a window on gravitation and cosmology. Cosmology and Nongalactic Astrophysics (2024). https://doi.org/10.48550/arXiv.2410.07281
9. Sommerfeld A. Zur Quantentheorie der Spektrallinien. Annalen der Physik, 366(51), 1–94 (1916). (In German) https://doi.org/10.1002/andp.19163561702
10. Van Dyck R. S., Schwinberg P. B., Dehmelt H. G. New high-precision comparison of electron and positron g factors. Physical Review Letters, 59(1), 26–29 (1987). https://doi.org/10.1103/PhysRevLett.59.26
11. Odom B., Hanneke D., D’Urso B. et al. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Physical Review Letters, 97(3), 030801 (2006). https://doi.org/10.1103/PhysRevLett.97.030801; https://elibrary.ru/mmehjp
12. Gabrielse G., Hanneke D., Kinoshita T. et al. New determination of the fine structure constant from the electron g value and QED (Erratum), Physical Review Letters, 99, 039902 (2007). https://doi.org/10.1103/PhysRevLett.99.039902
13. Hanneke D., Fogwell S., Gabrielse G. New measurement of the electron magnetic moment and the fine structure constant. Physical Review Letters, 100, 120801 (2008). https://doi.org/10.1103/PhysRevLett.100.120801; https://elibrary.ru/mmeidp
14. Fan X., Myers T. G., Sukra B. A. D., Gabrielse G. Measurement of the Electron Magnetic Moment. Physical Review Letters, 130, 071801 (2023). https://doi.org/10.1103/PhysRevLett.130.071801; https://elibrary.ru/hjsveh
15. Kinoshita T., Nio М. Improved α4 term of the electron anomalous magnetic moment. Physical Review D, 73, 013003 (2006). https://doi.org/10.1103/PhysRevD.73.013003; https://elibrary.ru/mfsjzz
16. Aoyama T., Hayakawa M., Kinoshita T. et al. Revised value of the eighth-order electron g-2. Physical Review Letters, 99, 110406 (2007). https://doi.org/10.1103/physrevlett.99.110406
17. Aoyama T., Kinoshita T., Nio M. Revised and improved value of the QED tenth-order electron anomalous magnetic moment. Physical Review D, 97(3), 036001 (2018). https://doi.org/10.1103/PhysRevD.97.036001; https://elibrary.ru/yfrapr
18. Wicht A., Hensley J. M., Sarajlic E., Chu S. A preliminary measurement of the fine structure constant based on atom interferometry. Physica Scripta, 2002(T102), 82–88 (2002). https://doi.org/10.1238/Physica.Topical.102a00082
19. Cadoret M., de Mirandes E., Clade P. et al. Combination of Bloch oscillations with a Ramsey-Bordé interferometer: new determination of the fine structure constant. Physical Review Letters, 101, 230801 (2008). https://doi.org/10.1103/PhysRevLett.101.230801
20. Bouchendira R., Cladé P., Guellati-Khélifa S., Nez F., Biraben F. New determination of the fine structure constant and test of the quantum electrodynamics. Physical Review Letters, 106, 080801 (2011). https://doi.org/10.1103/PhysRevLett.106.080801
21. Clade P., de Mirandes E., Cadoret M. et al. Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: determination of the fine-structure constant. Physical Review A, 74, 052109 (2006). https://doi.org/10.1103/PhysRevA.74.052109; https://elibrary.ru/ycqmax
22. Parker R. H., Yu C., Zhong W., Estey B., Müller H. Measurement of the fine-structure constant as a test of the Standard Model. Science, 360(6385), 191–195 (2018). https://doi.org/10.1126/science.aap7706; https://elibrary.ru/ygowrf
23. Morel L., Yao Z., Cladé P., Guellati-Khélifa S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature, 588, 61–65 (2020). https://doi.org/10.1038/s41586-020-2964-7; https://elibrary.ru/inrrig
24. Borde Ch. J. Atomic interferometry with internal state labeling. Physics Letters A, 140(1-2), 10–12 (1989). https://doi.org/10.1016/0375-9601(89)90537-9
25. Tiesinga E., Mohr P. J., Newell D. B., Taylor B. N. CODATA recommended values of the fundamental physical constants: 2018. Reviews of Modern Physics, 93, 025010 (2021). https://doi.org/10.1103/RevModPhys.93.025010; https://elibrary.ru/veyaoc
26. Mount B. J., Redshaw M., Myers E. G. Atomic masses of 6Li, 23Na, 39,41K, 85,87Rb, and 133Cs. Physical Review A, 82, 042513 (2010). https://doi.org/10.1103/PhysRevA.82.042513; https://elibrary.ru/ogccbt
27. Mohr P. J., Newell D. B., Taylor B. N. CODATA recommended values of the fundamental physical constants: 2014. Reviews of Modern Physics, 88, 035009 (2016). https://doi.org/10.1103/RevModPhys.88.035009; https://elibrary.ru/vkhelp
28. Tanabashi M., Hagiwara K., Hikasa K. et al., Review in Particle Physics. Physical Review D, 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001; https://elibrary.ru/dtlofo
29. Schwinger J. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review Journals Archive, 73, 416 (1948). https://doi.org/10.1103/PhysRev.73.416
30. Bronnikov K. A., Ivashchuk V. D., Khruschov V. V. Measurement Techniques, 65(3), 151–156 (2022). https://doi.org/10.1007/s11018-022-02062-z
31. Bronnikov K. A., Kalinin M. I., Khruschov V. V. Legal & Applied Metrology, (1), 11–17 (2024). (In Russ.). https://elibrary.ru/wkmwmw
32. Rosenband T., Hume D. B., Schmidt P. O. et al. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. Science, 319(5871), 1808–1812 (2008). https://doi.org/10.1126/science.1154622; https://elibrary.ru/mewhhh
33. Godun R. M., Nisbet-Jones P. B. R., Jones J. M. et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Physical Review Letters, 113, 210801 (2014). https://doi.org/10.1103/PhysRevLett.113.210801; https://elibrary.ru/urvhwh
34. Levshakov S. A., Ng K-W., Henkel C. et al. Testing the weak equivalence principle by differential measurements of fundamental constants in the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 487(4), 5175–5187 (2019). https://doi.org/10.1093/mnras/stz1628; https://elibrary.ru/djgwdl
35. Lange R., Huntemann N., Rahm J. M. et al. Improved Limits for Violations of Local Position Invariance from Atomic Clock Comparisons. Physical Review Letters, 126, 011102 (2021). https://doi.org/10.1103/physrevlett.126.011102
36. Flambaum V. V., Dzuba V. A. Search for variation of the fundamental constants in atomic, molecular and nuclear spectra. Canadian Journal of Physics, 87(1), 25–33 (2009). https://doi.org/10.1139/p08-072; https://elibrary.ru/mmyzrj
37. Filzinger M., Dorscher S., Lange R. et al. Improved limits on the coupling of ultralight bosonic dark matter to photons from optical atomic clock comparisons. Physical Review Letters, 130, 2530011 (2023). https://doi.org/10.1103/PhysRevLett.130.253001; https://elibrary.ru/avsglk
38. Murphy M. T., Berke D.A., Liu F. et al. A limit on variations in the fine-structure constant from spectra of nearby Sun-like stars. Science, 378(6620), 634–636 (2022). https://doi.org/10.1126/science.abi9232
39. Kalita S., Uniyal A. C onstraining fundamental parameters in modifi ed gravity using Gaia-DR2 massive white dwarf observation. The Astrophysical Journal, 949(2), 62 (2023). https://doi.org/10.3847/1538-4357/accf1c; https://elibrary.ru/wergrb
40. Jiang L., Fu S., Wang F. et al. Constraints on the variation of the fi ne-structure constant at 3˂ᴢ˂10 with JWST emissionline galaxies. Cosmology and Nongalactic Astrophysics (2024). https://doi.org/10.48550/arXiv.2405.08977
41. Milakovic D. Fine structure constant measurements in quasar absorption systems. Methodology (2023). https://doi.org/10.48550/arXiv.2310.00107
42. Tohfa H., Crump J., Baker E. et al. A cosmic microwave background search for fine-structure constant evolution. Cosmology and Nongalactic Astrophysics (2023). https://doi.org/10.48550/arXiv.2307.06768
43. Meisner U.-G., Metsch B. Ch., Meyer H. The electromagnetic fine-structure constant in primordial nucleosynthesis revisited. High Energy Physics – Theory (2023). https://doi.org/10.48550/arXiv.2305.15849
44. Seto O., Takahashi T., Toda Y. Variation of the fine structure constant in the light of recent helium abundance measurement. Physical Review D, 108, 023525 (2023). https://doi.org/10.1103/PhysRevD.108.023525; https://elibrary.ru/vrbxxb
45. Matsumoto A., Ouchi M., Nakajima K. et al., EMPRESS. VIII. A new determination of primordial He abundance with extremely metal-poor galaxies: a suggestion of the lepton asymmetry and implications for the Hubble tension. The Astrophysical Journal, 941(2), 167 (2022). https://doi.org/10.3847/1538-4357/ac9ea1; https://elibrary.ru/kruwig
46. Webb J. K., Murphy M. T., Flambaum V. V. et al. Further evidence for cosmological evolution of the fine structure constant. Physical Review Letters, 87, 091301 (2001). https://doi.org/10.1103/PhysRevLett.87.091301; https://elibrary.ru/lmwhmp
47. Webb J. K., King J.A., Murphy M. T. et al. Indications of a spatial variation of the fine structure constant. Physical Review Letters, 107, 191101 (2011). https://doi.org/10.1103/PhysRevLett.107.191101; https://elibrary.ru/phzfyd
48. Levshakov S. A., Combes F., Boone F. et al., An upper limit to the variation in the fundamental constants at redshift z=5.2. Astronomy and Astrophysics, 540, L9 (2012). https://doi.org/10.1051/0004-6361/201219042; https://elibrary.ru/pdmvpx
49. Whitmore J. B., Murphy M. T. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra. Monthly Notices of the Royal Astronomical Society, 447(1), 446–462 (2015). https://doi.org/10.1093/mnras/stu2420; https://elibrary.ru/spobzn
50. Lee C.-C., Webb J. K., Milaković D., Carswell R. F. Non-uniqueness in quasar absorption models and implications for measurements of the fine structure constant. Monthly Notices of the Royal Astronomical Society, 507(1), 27–42 (2021). https://doi.org/10.1093/mnras/stab2005; https://elibrary.ru/wzsfug
Supplementary files
Review
For citations:
Bronnikov K.A., Ivashchuk V.D., Khruschov V.V. The fine structure constant: a review of measurement results and possible space-time variations. Izmeritel`naya Tekhnika. 2025;74(2):5-16. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-2-5-12