

Artificial intelligence in oncourology: integrated deep learning technologies in the tasks of segmentation of three-dimensional images of kidney tumors
https://doi.org/10.32446/0368-1025it.2024-11-45-52
Abstract
In order to improve the accuracy of cancer diagnosis, a new convolutional neural network architecture is presented, which provides automatic segmentation and detection of kidney tumors on three-dimensional images obtained by computed tomography. The proposed approach is based on the integration of three complementary technologies: multilevel convolutional processing, residual connections and U-Net architectural principles. This approach ensures efficient processing of voluminous medical data. An original neural network system for segmentation of kidney images obtained by computed tomography and detection of kidney tumors has been built. To validate the system, a comprehensive experiment was conducted using the publicly available KiTS19 dataset (Kidney Tumor Segmentation 2019) provided by the University of Minnesota Clinic through the Grand Challenge platform. The dataset includes 300 labeled images of kidneys obtained by computed tomography, with confirmed diagnoses. The experiment consisted of the following stages: dataset preprocessing, including normalization and augmentation; system training for 210 cases; validation on an independent sample of 90 cases. The results of the experiment demonstrate the high diagnostic efficiency of the system: the accuracy of automatic segmentation of anatomical structures of the kidneys was 96 % (according to the Dice coefficient); the accuracy of detection and segmentation of tumor formations has reached 91 % (according to the Dice coefficient). The results obtained can be applied in the following areas of clinical practice: preoperative planning and navigation during organ – preserving operations; automated screening of studies using computed tomography for early detection of kidney tumors; quantitative assessment of the dynamics of tumor growth in monitoring the course of the disease; support for clinical decision-making in oncourology.
About the Authors
Valentin G. NikitaevRussian Federation
Moscow.
Dmitry Yu. Pushkar
Russian Federation
Moscow.
Vsevolod B. Matveev
Russian Federation
Moscow.
Alexander N. Pronichev
Russian Federation
Moscow.
Oleg V. Nagornov
Russian Federation
Moscow.
Alexander I. Otchenashenko
Russian Federation
Moscow.
Artem I. Kleyman
Russian Federation
Moscow.
References
1. Nikitaev V. G., Pronichev A. N., Nagornov O. V., Kruglova L. S., Sergeev V. Yu., Otchenashenko A. I. An artificial intelligence model for semantic segmentation of neoplasms in skin images. Biomedical Engineering, 58, 36–39 (2024). https://doi.org/10.1007/s10527-024-10361-8
2. Moawad A. W., Fuentes D. T., ElBanan M. G., Shalaby A. S., Guccione J., Kamel S. Jensen C. T., Elsayes K. M. Artificial intelligence in diagnostic radiology: where do we stand, challenges, and opportunities. Journal of Computer Assisted Tomography, 46(1), 78–90 (2022). https://doi.org/10.1097/RCT.0000000000001247
3. Litvin A. A., Burkin D. A., Kropinov A. A., Paramzin F. N. Radiomics and digital image texture analysis in oncology (review). Sovremennye Tehnologii v Medicine, 13(2), 97–106 (2021). (In Russ.) https://doi.org/10.17691/stm2021.13.2.11
4. Kim M., Yun J., Cho Y., Shin K., Jang R., Bae H.J., Kim N. Deep learning in medical imaging. Neurospine, 16(4), 657–668 (2019). https://doi.org/10.14245/ns.1938396.198
5. Nikitaev V. G., Tupitsyn N. N. Pronichev A. N. et al. Analysis of biological objects by digital optical microscopy using neural networks. Bulletin of the Lebedev Physics Institute, 48(10), 332–336 (2021). https://doi.org/10.3103/S1068335621100080
6. Nikitaev V. G., Pronichev A.N., Tamrazova O. B. Convolutional neural networks in the diagnosis of skin neoplasms. Bezopasnost Informatsionnykh Tekhnologiy, 28(4), 118–126 (2021). (In Russ.) https://doi.org/10.26583/bit.2021.4.09
7. Hosny A., Parmar C., Quackenbush J., Schwartz L. H., Aerts H. J. W. L. Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510 (2018). https://doi.org/10.1038/s41568-018-0016-5
8. Bluemke D. A., Moy L., Bredella M. A., Ertl-Wagner B. B., Fowler K. J., Goh V. J., Halpern E. F., Hess Ch. P., Schiebler M. L., Weiss C. R. Assessing radiology research on artificial intelligence. Radiology, 294(3), 487–489 (2020). https://doi.org/10.1148/radiol.2019192515
9. Varoquaux G., Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digital Medicine, 5(1), 48 (2022). https://doi.org/10.1038/s41746-022-00592-y
10. Choy G., Khalilzadeh O., Michalski M., Do S., Samir A. E., Pianykh O. S., Geis J. R., Pandharipande P. V., Brink J. A., Dreyer K. J. Current applications and future impact of machine learning in radiology. Radiology, 288(2), 318–328 (2018). https://doi.org/10.1148/radiol.2018171820
11. Montagnon E., Cerny M., Cadrin-Chênevert A., Hamilton V., Derennes Th., Ilinca A., Vandenbroucke-Menu F., Turcotte S., Kadoury S., Tang A. Deep learning workflow in radiology: a primer. Insights into Imaging, 11, 22 (2020). https://doi.org/10.1186/s13244-019-0832-5
12. European Society of Radiology (ESR). Current practical experience with artificial intelligence in clinical radiology: a survey of the European Society of Radiology. Insights into Imaging, 13(1), 107 (2022). https://doi.org/10.1186/s13244-022-01247-y
13. Mun S. K., Wong K. H., Lo Sh.-Ch. B., Li Ya., Bayarsaikhan Sh. Artificial Intelligence for the Future Radiology Diagnostic Service. Frontiers in Molecular Biosciences, 7, 614258 (2021). https://doi.org/10.3389/fmolb.2020.614258
14. Chan H. P., Samala R. K., Hadjiiski L. M., Zhou C. Deep Learning in Medical Image Analysis. Advances in Experimental Medicine and Biology, 1213, 3–21 (2020). https://doi.org/10.1007/978-3-030-33128-3_1
15. Aggarwal R., Sounderajah V., Martin G., Ting D. S. W., Karthikesalingam A., King D., Ashrafi an H., Darzi A. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digital Medicine, 4(1), 65 (2021). https://doi.org/10.1038/s41746-021-00438-z
16. Zhang Y., Wang Y., Hou F. J. Yang, G. Xiong, J. Tian, Ch. Zhong. Cascaded volumetric convolutional network for kidney tumor segmentation from CT volumes. arXiv:1910.02235v2 [eess.IV]. https://doi.org/10.48550/arXiv.1910.02235
17. Zhao W., Jiang D., Peña Queralta J., Westerlund T. MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net. Informatics in Medicine Unlocked, 19, 100357 (2020). https://doi.org/10.1016/j.imu.2020.100357
18. Heller N., Sathianathen N., Kalapara A et al. The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv:1904.00445v2 [eess.IV]. https://doi.org/10.48550/arXiv.1904.00445
Review
For citations:
Nikitaev V.G., Pushkar D.Yu., Matveev V.B., Pronichev A.N., Nagornov O.V., Otchenashenko A.I., Kleyman A.I. Artificial intelligence in oncourology: integrated deep learning technologies in the tasks of segmentation of three-dimensional images of kidney tumors. Izmeritel`naya Tekhnika. 2024;(11):45-52. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-11-45-52