

Characteristics of temporal dynamics of liquid crystal spatial modulators as a limitation of the performance of tunable diffractive neural networks
https://doi.org/10.32446/0368-1025it.2025-1-83-89
Abstract
Liquid crystal spatial light modulators are used in a wide range of modern problems in science and technology. These modulators are used to control the amplitude, phase, and direction of propagation of coherent optical radiation in optical information processing systems. However, the influence of the characteristics of the temporal dynamics of liquid crystal spatial light modulators on the performance of information optical systems, including diffractive neural networks, has not been sufficiently studied. The article presents the results of a study of the temporal dynamics of phase modulation of the liquid crystal spatial light modulator SLM-200 (Santec, Japan). Computer-synthesized binary phase diffractive optical elements were used in the experiments, and the characteristics of the temporal dynamics of the optical modulator were measured: 125 ms is the rise time of the diffraction efficiency when displaying diffractive optical elements on the screen; 61.9 ms is the decay time when switching frames. With these characteristics, it is possible to ensure the formation of a variable optical field at a frame display frequency of 2 Hz with an interference level of –17.1 dB. Increasing the frame display frequency leads to the appearance of unavoidable interframe interference, which in turn limits the effective performance of the information system. The results obtained can be useful in designing high-performance optical information processing systems and diffraction neural networks
About the Authors
A. A. VolkovRussian Federation
Anton A. Volkov
T. Z. Minikhanov
Russian Federation
Timur Z. Minikhanov
E. Yu. Zlokazov
Russian Federation
Evgeniy Yu. Zlokazov
A. V. Shifrina
Russian Federation
Anna V. Shifrina
E. K. Petrova
Russian Federation
Elizaveta K. Petrova
R. S. Starikov
Russian Federation
Rostislav S. Starikov
References
1. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
2. Malik P., Pathania M., Rathaur V. K. et al. Overview of artificial intelligence in medicine. Medknow, 8, 2328–2331 (2019). https://doi.org/10.4103/jfmpc.jfmpc_440_19
3. Jiang C., Zhang H., Ren Y. et al. Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105 (2017). https://doi.org/10.1109/MWC.2016.1500356WC
4. Wei H., Laszewski M., Kehtarnavaz N. Deep learning-based person detection and classification for far field video surveillance. 2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS), 1–4 (2018). https://doi.org/10.1109/DCAS.2018.8620111
5. Collobert R., Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. Proceedings of the 25th international conference on Machine learning, 160–167 (2008). https://doi.org/10.1145/1390156.1390177
6. Rymov D., Svistunov A., Starikov R. et al. 3D-CGH-Net: customizable 3D-hologram generation via deep learning. Optics and Lasers in Engineering, 184, 108645 (2025). https://doi.org/10.1016/j.optlaseng.2024.108645
7. Kim N. S., Austin T., Baauw D. et al. Leakage current: Moore’s law meets static power. Computer, 36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885
8. Dennard R. H., Gaensslen F. H., Yu H.-N. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of solid-state circuits, 9(5), 256–268 (1974). https://doi.org/10.1109/N-SSC.2007.4785543
9. Hamerly R., Bernstein L., Sludds A. et al. Large-scale optical neural networks based on photoelectric multiplication. Physical Review X, 9(2), 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032
10. Mengu D., Luo Y., Rivenson Y., Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE Journal of Selected Topics in Quantum Electronics, 26(1), 1–14 (2019). https://doi.org/10.1109/JSTQE.2019.2921376
11. Xu R., Lu P., Xu F., Shi Y. A survey of approaches for implementing optical neural networks. Optics & Laser Technology, 136, 106787 (2021). https://doi.org/10.1016/j.optlastec.2020.106787
12. Minikhanov T. Z., Zlokazov E. Yu., Starikov R. S., Cheremkhin P. A. Phase modulation time dynamics of the liquid crystal spatial light modulator. Measurement Techniques, 66(12), 935–939 (2024). https://doi.org/10.1007/s11018-024-02309-x
13. Goodman J. W., Dias A., Woody L. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Optics Letters, 2(1), 1–3 (1978). https://doi.org/10.1364/OL.2.000001
14. Dong J., Gigan S., Krzakala F., Wainrib G. Scaling up echo-state networks with multiple light scattering. 2018 IEEE Statistical Signal Processing Workshop (SSP), 448–452 (2018). https://doi.org/10.1109/SSP.2018.8450698
15. Feldmann J., Youngblood N., Wright C. D., Bhaskaran H., Pernice W.H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755), 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8
16. Shen Y., Harris N. C., Skirlo S. et al. Deep learning with coherent nanophotonic circuits. Nature photonics, 11(7), 441– 446 (2017). https://doi.org/10.1038/nphoton.2017.93
17. Lin X., Rivenson Y., Yardimci N. T. et al. All-optical machine learning using diffractive deep neural networks. Science, 361(6406), 1004–1008 (2018). https://doi.org/10.1126/science.aat8084
18. Chen H., Feng J., Jiang M. et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7(10), 1483–1491 (2021). https://doi.org/10.1016/j.eng.2020.07.032
19. Zhou T., Lin X., Wu J. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics, 15(5), 367–373 (2021). https://doi.org/10.1038/s41566-021-00796-w
20. Bernstein L., Sludds A., Panuski C. et al. Single-shot optical neural network. Science Advances, 9(25), 7904 (2023). https://doi.org/10.1126/sciadv.adg7904
21. Deng Z., Qing D.-K., Hemmer P. R., Zubairy M. S. Implementation of optical associative memory by a computer-generated hologram with a novel thresholding scheme. Optics letters, 30(15), 1944–1946 (2005). https://doi.org/10.1364/ol.30.001944
22. Zuo Y., Li B., Zhao Y. et al. All-optical neural network with nonlinear activation functions. Optica, 6(9), 1132–1137 (2019). https://doi.org/10.1364/OPTICA.6.001132
23. Evtikhiev N. N., Krasnov V. V., Ryabcev I. P., Rodin V. G., Starikov R. S., Cheremkhin P. A. Measurement of modulation of the phase liquid-crystal light modulator Santec SLM-200 and analysis of its applicability for the reconstruction of images from diffraction elements. Measurement Techniques, 64(5), 346–351 (2021). https://doi.org/10.1007/s11018-021-01940-2
24. Yang G.-z., Dong B.-z., Gu B.-y., Zhuang J.-y., Ersoy O. K. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Applied optics, 33(2), 209–218 (1994). https://doi.org/10.1364/AO.33.000209
25. Ovchinnikov A., Krasnov V., Cheremkhin P. et al. What binarization method is the best for amplitude inline Fresnel holograms synthesized for divergent beams using the direct search with random trajectory technique? Journal of Imaging, 9(2), 28 (2023). https://doi.org/10.3390/jimaging9020028
26. Minikhanov T. Z., Zlokazov E. Yu., Krasnov V. V., Derevenickaia D. D. Research of dynamic characteristics of phase of the LC SLM HoloEye PLUTO 2 VIS-016 and HoloEye GAEA-2 VIS-036. Proceedings of the XXXII International School-Symposium on Holography, Coherent Optics and Photonics, St. Petersburg, рр. 195–197 (2022). (In Russ.)
27.
Supplementary files
Review
For citations:
Volkov A.A., Minikhanov T.Z., Zlokazov E.Yu., Shifrina A.V., Petrova E.K., Starikov R.S. Characteristics of temporal dynamics of liquid crystal spatial modulators as a limitation of the performance of tunable diffractive neural networks. Izmeritel`naya Tekhnika. 2025;74(1):83-89. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-1-83-89