

VNIIFTRI reference base in the field of underwater acoustic measurements: metrological characteristics, functional capabilities, innovations and prospects for improving standards
https://doi.org/10.32446/0368-1025it.2024-12-46-54
Abstract
The updated VNIIFTRI’s underwater acoustic reference base is described. The article provides information about a special multifunctional metrological water tank, an underwater acoustic excess pressure tank, metrological characteristics of reference facilities of state primary standard of units of sound pressure and oscillating velocity in the water media GET 55-2017, state primary standard of the unit of ultrasound power in water GET 169-2019, state primary standard of the unit of sound velocity in liquid media GET 201-2012. A model of a hydrophone as an operational link and a minimum-phase four-terminal network is proposed, the concept of energy sensitivity in frequency bands is introduced, a method for determining the effective size of a hydrophone and obtaining its minimum-phase frequency response of sensitivity is proposed, implemented in GET 55-2017. A method for representing the complex frequency response of sensitivity by a formula is proposed, and requirements for the functionality of a digital metrology platform are formulated. GET 169-2019 is supplemented with two facilities for reproducing units of intensity and pressure of ultrasound in water, which will make it possible to find a comprehensive solution to the problem of metrological support for ultrasound medical and other equipment manufactured and used in Russia. GET 201-2012 is supplemented with a facility for reproducing and transmitting the unit of sound velocity in water using the time-of-flight pulse method with a variable base. The change in the base length is measured using the optical interference method, and the time delay is measured using characteristic points of pulse signals. Prospects for improving primary standards are discussed. Attention is drawn to the problems that have arisen in the participation of the Russia in international comparisons and possible ways to solve them.
About the Authors
A. E. IsaevRussian Federation
Alexander E. Isaev
Mendeleevo, Moscow region
S. I. Kuznetsov
Russian Federation
Sergey I. Kuznetsov
Mendeleevo, Moscow region
Yu. A. Lomovatskiy
Russian Federation
Yuriy A. Lomovatskiy
Mendeleevo, Moscow region
A. N. Matveev
Russian Federation
Anton N. Matveev
Mendeleevo, Moscow region
References
1. Isaev A. E., Matveev A. N., Nekrich G. S., Nekrich S. F., Sil’vestrov S. V. State primary standard GET 55-2017 for units of sound pressure and vibrational velocity in a water medium. Measurement Techniques, 60(8), 751–754 (2017). https://doi.org/10.1007/s11018-017-1266-4
2. Еnyakov А. М., Kuznetsov S. I., Lukin G. S. State primary standard of ultrasound power unit in water GET 169-2019. Measurement Techniques, 63(3), 151–157 (2020). https://doi.org/10.1007/s11018-020-01765-5
3. Belogol’skij V. A., Sil’vestrov S. V. State primary standard of the unit of sound speed in liquid media GET 201-2012, In: Okrepilov V. V. (ed.) Russian Metrological Encyclopedia, vol. 1, pp. 571–572. IIF Liki Rossii, St. Petersburg (2015). (In Russ.) https://www.elibrary.ru/usewir
4. Isaev A. E., Polikarpov A. M., Khatamtaev B. I. Experimental determination of the acoustic center of a measuring hydrophone. Al'manac of Modern Metrology, (2(30)), 56–71 (2022). (In Russ.) https://www.elibrary.ru/iwdutp
5. Khatamtaev B. I., Shcherblyuk N. G. Experimental determination of the acoustic center of a measuring hydrophone. Measurement Techniques, 65(10), 763–768 (2023). https://doi.org/10.1007/s11018-023-02149-1
6. Isaev A. E., Khatamtaev B. I. The Acoustic Center of a Measuring Hydrophone. Acoustical Physics, 69(1), 93–101 (2023). https://doi.org/10.1134/S1063771022060057
7. Isaev A. E., Khatamtaev B. I. Analytical representation of the complex frequency response of a hydrophone. Measurement Techniques, 64(8), 622–627 (2021). https://doi.org/10.1007/s11018-021-01981-7
8. Isaev A. E., Polikarpov A. M. Representation of the hydrophone frequency response by a formula as practical feasibility and expansion the capabilities of metrology digital platform. Al'manac of Modern Metrology, (2(38)), 89–105 (2024). (In Russ.) https://www.elibrary.ru/tlmbkx
9. Isaev A. E., Matveev A. N., Nikolaenko A. S., Polikarpov A. M. Sensitivity of sonar receiver when measuring underwater noise. Measurement Techniques, 61(9), 944–949 (2018). https://doi.org/10.1007/s11018-018-1530-2
10. Isaev A. E., Chernikov I. V. Laboratory calibration of an underwater sound receiver in the reverberation fi eld of a noise signal. Acoustical Physics, 61(6), 699–706 (2015). https://doi.org/10.1134/S1063771015050097
11. Isaev A. E., Matveev A. N. Calibration of hydrophones in a fi eld with continuous radiation in a reverberating pool. Acoustical Physics, 55(6), 762–770 (2009). https://doi.org/10.1134/S1063771009060104
12. Isaev A. E., Nikolaenko A. S. Laboratory free-fi eld calibration of a hydroacoustic receiver at low frequencies. Measurement Techniques, 61(1), 72–78 (2018). https://doi.org/10.1007/s11018-018-1390-9
13. Isaev A. E., Matveev A. N., Smelov V. A., Shchelkunov A. I. Reduction of the error of hydrophone calibration with respect to the fi eld in a hydroacoustic tank by the reciprocity method. Acoustical Physics, 50(5), 535–543 (2004). https://doi.org/10.1134/1.1797458
14. Kuznetsov S. I. Reference power meter for ultrasound beam in water EIMU-3, Al'manac of Modern Metrology, (3(31)), 31–44 (2022). (In Russ.) https://www.elibrary.ru/nhawan
15. Enyakov A. M., Kuznetsov S. I. Features of the application of sound-transparent metallized foils for the calibration of hydrophones using optical interferometry in free fi eld, Al'manac of Modern Metrology, (3(27)), 85–103 (2021). (In Russ.) https://www.elibrary.ru/hnslfs
16. Lomovatskiy Yu. A., Samorukova L. M., Silvestrov S. V. Time-of-fl ight method for determining the speed of sound in liquid media and a device for its implementation: Patent RU 2786786 C1. Inventions. Utility models, no. 36 (2022).
17. Lomovatskiy Yu. A. Izmereniya skorosti zvuka v vode. In: Granovskiy V. A. (ed.) Izmereniya i ispytaniya v sudostroyenii i smezhnykh otraslyakh Sudometrika 2018, pp. 14–15, St. Petersburg, (2018). (In Russ.) https://www.elektropribor.spb.ru/upload/medialibrary/b79/Sbornik_F.pdf
18. Isaev A. E., Matveev A. N., Nekrich G. S. et al. Results of the COOMET 646/RU/14 pilot comparison of national standards of the unit of sound oscillation velocity of water particles. Measurement Techniques, 62(7), 651–658 (2019). https://doi.org/10.1007/s11018-019-01674-2
19. Isaev A. E., Yi C., Matveev A. N. et al. Results of pilot comparisons of amplitude–phase calibrations of hydrophones in the frequency range 10–500 kHz COOMET 786/RU-A/19. Measurement Techniques, 66(3), 211–216 (2023). https://doi.org/10.1007/s11018-023-02212-x
20. Chen Y., Isaev А. Е., Matveev A. N. et al. The COOMET Pilot Comparison 473/RU-a/09: Comparison of hydrophone calibrations in the frequency range 250 Hz to 200 kHz. Metrologia, 48(1A), 09004 (2011). https://doi.org/10.1088/0026-1394/48/1A/09004
21. Chen Y., Isaev A. E., Matveev A. N. et al. COOMET.AUV.W-S1 supplementary comparison of free-fi eld hydrophone calibrations in the frequency range 250 Hz to 8 kHz. Metrologia, 52(1A), 09001 (2015). https://doi.org/10.1088/0026-1394/52/1A/09001
22. Isaev A. E., Matveev A. N., Shcherbluck N. G. et al. Interlaboratory comparisons of hydrophone calibration in the 3– 500 kHz frequency range. Measurement Techniques, 59(1), 99–103 (2016). https://doi.org/10.1007/s11018-016-0924-2
23. Robinson S. P. et al. CCAUV.W-K2 fi nal report – key comparison CCAUV.W-K2: calibration of hydrophones in the frequency range from 250 Hz to 500 kHz. Metrologia, 59(1A), 09003 (2022). https://doi.org/10.1088/0026-1394/59/1A/09003
24. Isaev A. E., Matveev A. N., Strelov S. V., Shcherblyuk N. G. Key comparison CCAUV.W-K2: features of hydrophone calibration. Measurement Techniques, 67(1), 79–86 (2024). https://doi.org/10.1007/s11018-024-02323-z
Supplementary files
Review
For citations:
Isaev A.E., Kuznetsov S.I., Lomovatskiy Yu.A., Matveev A.N. VNIIFTRI reference base in the field of underwater acoustic measurements: metrological characteristics, functional capabilities, innovations and prospects for improving standards. Izmeritel`naya Tekhnika. 2024;73(12):46-54. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-12-46-54