

Increasing the location accuracy of the operating unit of a three-axis metal-cutting machine tool: application of the differential geometric model of volumetric errors
https://doi.org/10.32446/0368-1025it.2024-11-4-13
Abstract
The article is devoted to increasing the volumetric accuracy of multi-axis machine tools. Based on the model of measurement and calculation of the volumetric geometric error of machine tools presented by the authors, a method has been developed which allows to signifi cantly improve the accuracy of the movement of the operating unit of a three-axis metal-cutting machine tool to a given point. The astatic law and the calculation of the coordinate correction according to the differential geometric model of the volumetric error are used to control the movement of the operating unit. The developed method is implemented programmatically and allows to perform the correction in the control program represented in G-code. As a result of experiments on software correction of volumetric errors according to the developed method, conducted at the State Engineering Centre of the Moscow State University of Technology “STANKIN” on a threeaxis CNC machine tool, a signifi cant reduction (up to 90 %) of geometric volumetric errors was shown. The developed method can be used to improve the accuracy of metal-cutting machine tools by creating postprocessors that calculate corrections to the coordinates set in the control system based on the results of interferometric measurements.
Keywords: volumetric accuracy, interference measurements, three-axis machine tools, machine tool accuracy, geometric errors, astatic control law, mathematical modelling, differential geometry
Keywords
About the Authors
Sergey N. GrigorievRussian Federation
Moscow.
Dmitriy A. Masterenko
Russian Federation
Moscow.
Yaroslav I. Pimushkin
Russian Federation
Moscow.
Mikhail M. Stebulyanin
Russian Federation
Moscow.
References
1. Grigoriev S. N., Teleshevskii V. I., Glubokov A. V. et al. The problems of metrological support for the preparation of production in machine construction. Measurement Techniques, 55(5), 526–529 (2012). https://doi.org/10.1007/s11018-012-9993-z
2. Grigoriev S. N., Martinov G. M. Scalable open cross-platform kernel of PCNC system for multi-axis machine tool. Procedia CIRP, 1, 238–243 (2012). https://doi.org/10.1016/j.procir.2012.04.043
3. Grigoriev S. N., Martinov G. M. Research and development of a cross-platform CNC kernel for multi-axis machine tool. Procedia CIRP, 14, 517–522 (2014). https://doi.org/10.1016/j.procir.2014.03.051
4. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N. Contemporary state and outlook for development of metrological assurance in the machine-building industry. Measurement Techniques, 55(11), 1311–1315 (2013). https://doi.org/10.1007/s11018-013-0126-0
5. Zakharov O. V., Kochetkov A. V., Bobrovskij N. M., Bobrovskij I. N. Analysis of stationary means of measurement fi lters with optimum sensitivity. Proceedings 2016 13th International Scientifi c-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, Russia, 2016, pp. 241–244. https://doi.org/10.1109/APEIE.2016.7802265
6. Zakharchenko Yu., Kochetkov A. V., Salov P. M., Zakharov O. V. New system of functional parameters for surface texture analysis. Materials Today: Proceedings, 38(4), 1866–1870 (2021). https://doi.org/10.1016/j.matpr.2020.08.488
7. Okafor A. C., Ertekin Y. M. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools & Manufacture, 40(8), 1199–1213 (2000). https://doi.org/10.1016/S0890-6955(99)00105-4
8. Schwenke H., Knapp W., Haitjema H. et al. Geometric error measurement and compensation of machines – An update. CIRP Annals, 57(2), 660–675 (2008). https://doi.org/10.1016/j.cirp.2008.09.008
9. Lamikiz A., López L. N., Ocerin O. et al. The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in fi ve-axis milling centres. International Journal of Advanced Manufacturing Technology, 37(1), 122–139 (2008). https://doi.org/10.1007/s00170-007-0956-5
10. Liu Y., Wan M., Xing W. J., Zhang W. H. Generalized actual inverse kinematic model for compensating geometric errors in fi ve-axis machine tools. International Journal of Mechanical Sciences, (145), 299–317 (2018). http://dx.doi.org/10.1016/j.ijmecsci.2018.07.022
11. Xuemin Zhong, Hongqi Liu, Hao Chang, Bin Li. An identifi cation method of squareness errors based on volumetric error model in machine tools. International Journal of Technology and Engineering Studies, 4(4), 132–142 (2018). https://dx.doi.org/10.20469/ijtes.4.10002-4
12. Jun Zha, Tao Wang, Linhui Li, Yaolong Chen. Volumetric error compensation of machine tool using laser tracer and machining verifi cation. International Journal of Advanced Manufacturing Technology, 108, 2467–2481 (2020). https://doi.org/10.1007/s00170-020-05556-8
13. Wang Y., Guo X., Kim J. et al. A single camera unit-based three-dimensional surface imaging technique. International Journal of Advanced Manufacturing Technology, 127, 4833–4843 (2023). https://doi.org/10.1007/s00170-023-11866-4
14. Pimushkin Ya. I., Stebulyanin M. M., Masterenko D. A. Analysis of models of measurement and correction of volumetric error of three-axis metal-cutting machine tool. Izmeritel’naya Tekhnika, 73(7), 35–43 (2024). (In Russ.) https://doi.org/10.32446/0368-1025it.2024-7-35-43
15. Serkov N. A., Niculichev I. V. Methods and measurement tools of primary deviations for carrying system’s mechanisms of multicoordinate CNC machine tools. Problemy mashinostroeniya i avtomatizacii, 2, 43–51 (2012). (In Russ.) https://elibrary.ru/ozbekf
16. Serkov N. A. Methods and measurement tools of relative position of the executive bodies of multiaxis СNC machine tools. Problemy mashinostroeniya i avtomatizacii, 4, 112–124 (2012). (In Russ.) https://elibrary.ru/pgqgrj
17. Serkov N. A. Precision of multi-axis CNC machines: Theoretical and experimental foundations, Lenand, Moscow (2015). (In Russ.)
18. Teleshevskii V. I., Sokolov V. A. Laser correction of geometric errors of multi-axis programmed-controlled systems. Measurement Techniques, 55(5), 535–541 (2012). https://doi.org/10.1007/s11018-012-9995-x
19. Teleshevskii V. I., Sokolov V. A. Automatic correction of three-dimensional geometric errors in computer controlled measurement and technological systems. Measurement Techniques, 58(7), 747–751 (2015). https://doi.org/10.1007/s11018-015-0787-y
20. Cheng Q., Feng Q., Liu Z. et al. Fluctuation prediction of machining accuracy for multi-axis machine tool based on stochastic process theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229, 2534–2550 (2015). https://doi.org/10.1177/0954406214562633
21. Pimushkin Ya. I., Stebulyanin M. M. Correction of volumetric accuracy of the portal system using a laser tracker. Vestnik MGTU “STANKIN”, 64(1), 80–86 (2023). (In Russ.) https://doi.org/10.47617/2072-3172_2023_1_80
22. Masterenko D. A. Mathematical modeling of the geometric volumetric accuracy of multi-axis technological and measuring machines based on differential geometry concepts. Vestnik Pacifi c State University, (4(63)), 17–28 (2021). (In Russ.) https://elibrary.ru/stslhu
23. McConnell A. D. Application of tensor analysis. Dover publ., New York (1957).
24. Pimushkin, Ya. I., Stebulyanin, M. M., Masterenko, D. A. Towards the problem of laser correction of volumetric error of multi-axis machines with gantry kinematics. Control. Diagnostics, 26(12(306)), 46–53 (2023). (In Russ.) https://elibrary.ru/ggbylg
25. Lurie A. I. Analytical mechanics. Fizmatlit, Moscow (1961). (In Russ.)
Supplementary files
Review
For citations:
Grigoriev S.N., Masterenko D.A., Pimushkin Ya.I., Stebulyanin M.M. Increasing the location accuracy of the operating unit of a three-axis metal-cutting machine tool: application of the differential geometric model of volumetric errors. Izmeritel`naya Tekhnika. 2024;(11):4-13. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-11-4-13