

Relation of the internal demagnetization coefficient of a ferromagnetic material to the parameters of its saturation magnetic hysteresis loop: application to magnetic structuroscopy.
https://doi.org/10.32446/0368-1025it.2025-1-104-112
Abstract
Changes in the structural parameters and physical and mechanical properties of a ferromagnetic material are reliably monitored using its intrinsic demagnetization coefficient, which arises due to mechanical stresses, inhomogeneities in the structure and anisotropy of the material. However, the determination of the internal demagnetization coefficient of a material requires a cycle of anhysteretic magnetization of thermally demagnetized material with precision measurements of its magnetization and subsequent statistical processing of the measurement results, which reduces the reliability and complicates the use of this coefficient in magnetic structuroscopy. When analyzing the relationship between the internal demagnetization coefficient of a ferromagnetic material and the parameters of the limiting loop of its magnetic hysteresis, the formula for indirect determination of the internal demagnetization coefficient of a ferromagnetic material by its coercivity, residual magnetization and technical saturation magnetization, derived earlier by the author, was used. The influence of heat treatment modes, chemical composition of steels and the ratio between their magnetic parameters on the structural heterogeneity of the studied materials is analyzed. The influence of heat treatment modes, chemical composition of steels and the ratio between their magnetic parameters on the structural heterogeneity of the studied materials is analyzed. An example of analysis of functional dependences and the range of possible changes in the internal demagnetization coefficient of a material at changes in its magnetic parameters in practically important ranges is given. The influence of carbon content in carbon steels on their internal demagnetization coefficient is studied. For the heat-resistant medium-carbon alloyed steel of 34CrMo4 grade, widely used in machine-building in the manufacture of forgings and fasteners, the range of quenching temperature variation, which provides the maximum structural heterogeneity of the quenched steel, has been established. It is shown that in the whole range of changes in tempering temperature of 34CrMo4 steel after quenching, the dependence of the internal demagnetization coefficient on these changes is monotonic. As a result of this study, the indirect determination of the internal demagnetization coefficient according to the proposed formula can be recommended for non-destructive control of tempering temperature of 34CrMo4 steel.
About the Author
S. G. SandomirskiBelarus
Sergei G. Sandomirski
References
1. Jiles D. Introduction to magnetism and magnetic materials. Chapman & Hall, London (1989).
2. Miheev M. N., Gorkunov Je. S. Magnetic methods of structural analysis and non-destructive testing. Nauka, Moscow (1993). (In Russ.)
3. Kljuev V. V., Muzhickij V. F., Gorkunov Je. S., Shherbinin V. E. Magnetic inspection methods. In Non-destructive testing. Handbook. Ed. V. V. Kljuev, vol. 6, book 1. Mashinostroenie, Moscow (2006). (In Russ.)
4. Chernyshev E. T., Chechurina E. N., Chernysheva N. G., Studencov N. V. Magnetic measurements. Izdatel’stvo standartov, Moscow (1969). (In Russ.)
5. Bida G. V., Nichipuruk A. P. Magnetic properties of heat-treated steels. UrO RAN, Ekaterinburg (2005). (In Russ.)
6. Kljuev V. V., Sandomirski S. G. Analysis and synthesis of structure-sensitive magnetic parameters of steels. SPEKTR, Moscow (2017). (In Russ.)
7. Petrova G. N. Internal demagnetising factor. Izvestija AN SSSR. Geographical and Geophysical Series, ХIII(4), 363– 368 (1949). (In Russ.)
8. Polivanov K. M. Ferromagnetics. Fundamentals of the theory of practical applications. Gosenergoizdat, Moscow, Leningrad (1957). (In Russ.)
9. Gorkunov E. S., Zakharov V. A., Chulkina A. A., Ul’yanov A. I. Internal demagnetization factor for porous ferromagnets in remagnetization process. Russian Journal of Nondestructive Testing, 40(1), 1–7 (2004). https://doi.org/10.1023/B:RUNT.0000036422.85036.cf
10. Janus R. I. Magnetization curves. Physical encyclopedic dictionary, 3, 354–355. Sovetskaja enciklopedia, Moscow (1963). (In Russ.)
11. Silveyra J. M., Conde Garrido J. M. On the anhysteretic magnetization of soft magnetic materials. AIP Advances, 12(3), 035019 (2022). https://doi.org/10.1063/9.0000328
12. Forrer R., Martak J. Le champ demagnetisant structural des ferromagnetiques et sa determination experimentale. Le Journal de physique et le radium. Serie VII, 2(6), 199–204 (1931). (In French)
13. Sandomirski S. G. Estimation of the internal demagnetizing factor of cast iron from its measured remanent magnetization. Russian Metallurgy (Metally), (5), 392–397 (2013). https://doi.org/10.1134/S003602951305011X
14. Sandomirski S. G. Change in the relationship between the magnetic parameters of cast iron compared to steel under the influence of internal demagnetization. Foundry Production and Metallurgy, (4(77)), 105–108 (2014). (In Russ.) https://elibrary.ru/tnajad
15. Anhalta М., Weidenfeller B., Mattei J. L. Inner demagnetizing factor in polymer bonded soft magnetic composites. Journal of Magnetism and Magnetic Materials, 320(20), e840–e844 (2008). https://doi.org/10.1016/j.jmmm.2008.04.061
16. Skomski R., Hadjipanayis G. C., Sellmyer D. J. Effective demagnetizing factors of complicated particle mixtures. IEEE Transactions on magnetics, 43(6), 2956–2958 (2007). https://digitalcommons.unl.edu/mrsecfacpubs/71
17. Takács J., Kovács G, Varga L. K. Internal demagnetizing factor in ferrous metals. Journal of Metallurgy, 752871 (2012). https://doi.org/10.1155/2012/752871
18. Varga L. K., Franco V., Kákay A., Kováčb J., Mazaleyrat F. The role of internal and external demagnetizing effects in nanocrystalline alloys. Transactions on Magnetics, 37(4), 2229–2231 (2001).
19. Varga L. K., Kováčb J., Novák L. Determination of external and internal demagnetizing factors for strip-like amorphous ribbon samples. Journal of Magnetism and Magnetic Material, 507, 166845 (2020). https://doi.org/10.1016/j.jmmm.2020.166845
20. Onderko F., Bircáková Z., Kollár P., Füzer J. et al. Influence of ferrite and resin content on inner demagnetizing fields of Fe-based com posite materials with ferrite-resin insulation. Acta Physica Polonica A, 137(5), 846–848 (2020). http://doi.org/10.12693/APhysPolA.137.846
21. Mccann Steven M., Leach J., Reddy Subrayal M., Mercer T. Methods of investigating the demagnetization factors within assemblies of superparamagnetic nanoparticles. AIP Advances, 12, 075212-1 (2022). https://doi.org/10.1063/5.0095899
22. Bozorth R. M. Ferromagnetism. D. Van Nostrand Company, Inc., New York (1951).
23. Stashkov A. N., Somova V. M., Sazhina B. Ju. еt al. A magnetic method for determining the concentration of residual austenite in maraging steels. Russian Journal of Nondestructive Testing, 47(12), 810–814 (2011). https://doi.org/10.1134/S1061830911120126
24. Stashkov A. N., Somova V. M., Sazhina E. Y. еt al. The magnetic properties of grade BHC-2Y steel subjected to plastic deformation. Russian Journal of Nondestructive Testing, 49(12), 705–714 (2013). https://doi.org/10.1134/S1061830913120097
25. Serbin E. D., Kostin V. N. On the possibility of evaluating magnetostriction characteristics of bulk ferromagnets based on their magnetic properties. Russian Journal of Nondestructive Testing, 55(5), 378–383 (2019). https://doi.org/10.1134/S1061830919050103
26. S. G. Sandomirski. Method of construction of anhysteretic magnetization curve of ferromagnetic material. RB patent 24370, September 2024.
27. Sandomirski S. G. Determining the anhysteretic magnetization curve for a ferromagnetic material according to the limiting loop parameters of its magnetic hysteresis. Russian Electrical Engineering, 94(10), 753–757 (2023). https://doi.org/10.3103/S1068371223100103
28. Janus R. I. Magnetic defectoscopy. Gostehizdat, Moscow, Leningrad (1946). (In Russ.)
29. Sandomirski S. G. Sensitivity of remanent magnetization of ferromagnetic components to the magnetic characteristics of their materials and geometrical parameters. Soviet Journal of Nondestructive Testing, 26(12), 875–881 (1991).
30. Method of determination of internal demagnetization coefficient of ferromagnetic material. RB patent 24437, November 2024.
31. Sandomirski S. G. Simulation result of the anhysteretic magnetization curve of a ferromagnetic material and its use for magnetic structural analysis. Abstracts of the XXXV Urals Conference with International Participation “Physical Methods of Non-Destructive Testing (Janusov Readings)”, 13–14 March 2024, Ekaterinburg, pp. 54–55 (2024). (In Russ.)
32. Sandomirski S. G. Modelling of the anhysteretic magnetization curve of ferromagnetic material and the possibility of using its result for magnetic structural analysis. Defektoskopija, (6), 51–56 (2024). (In Russ.) https://doi.org/10.31857/S0130308224060077
33. Sandomirski S. G. Increasing the structural sensitivity of the residual magnetization and coercive force of steels. Defektoskopija, (8), 62–64 (2023). (In Russ.) https://doi.org/10.31857/S0130308224060077
34. Tikadzumi S. Physics of ferromagnetism: magnetic properties of materials. Translated from Japanese M. V. Bystrov, ed. G. A. Smolensky, Mir, Moscow (1987). (In Russ.)
35. Miheev M. N., Morozova V. M. Magnetic and electrical properties of steel after different types of heat treatment. ONTI po priborostroeniju CNIIKA, Moscow (1964). (In Russ.)
36.
Supplementary files
Review
For citations:
Sandomirski S.G. Relation of the internal demagnetization coefficient of a ferromagnetic material to the parameters of its saturation magnetic hysteresis loop: application to magnetic structuroscopy. Izmeritel`naya Tekhnika. 2025;74(1):104-112. (In Russ.) https://doi.org/10.32446/0368-1025it.2025-1-104-112