

Reduction of the nonlinearity error of a computerized contact interferometer using digital scale image processing
https://doi.org/10.32446/0368-1025it.2024-8-4-12
Abstract
A computerized contact (vertical) interferometer developed at the Moscow State University of Technology “STANKIN” and based on the Uversky interferometer is described. The computerized interferometer with a resolution of 1 nm is designed for automated calibration of gauge blocks of 0, 1, 2 ISO tolerance grades with 0.1–100 mm nominal length range. Computerization of the Uversky interferometer significantly increases the calibration procedure efficiency, but at the same time causes an additional measurement error due to digital camera aberrations. A method and algorithm for computer aided correction of this error is proposed. The correction is provided by digital processing of the image from the video camera. The method is based on approximation of experimental data by polynomials of one variable of various degrees.
It experimentally confirms the effectiveness of the method by its application to the computerized Uversky contact interferometer. The advantages of the method include ease of implementation in the form of a computer program and the ability to quickly transform one-dimensional algorithms and programs for polynomials of two or three variables. The results of the proposed work are useful in improving the accuracy of measurement software for computerized interferometers and other optical mechanical measuring devices.
Keywords
About the Authors
P. N. EmelianovRussian Federation
Moscow
A. V. Zabelin
Russian Federation
Moscow
D. A. Masterenko
Russian Federation
Moscow
V. I. Teleshevskiy
Russian Federation
Moscow
References
1. Grigoriev S. N., Martinov G. M. Research and development of a cross-platform CNC kernel for multi-axis machine tool. Procedia CIRP, 14, 517–522 (2014). https://doi.org/10.1016/j.procir.2014.03.051
2. Grigoriev S. N., Martinov G. M. The control platform for decomposition and synthesis of specialized CNC systems. Procedia CIRP, 41, 858–863 (2016). https://doi.org/10.1016/j.procir.2015.08.031
3. Grigoriev S. N., Martinov G. M. Scalable open cross-platform kernel of PCNC system for multi-axis machine tool. Procedia CIRP, 1, 238–243 (2012). https://doi.org/10.1016/j.procir.2012.04.043
4. Grigoriev S. N., Martinov G. M. An ARM-based multi-channel CNC solution for multi-tasking turning and milling machines. Procedia CIRP, 46, 525–528 (2016). https://doi.org/10.1016/j.procir.2016.04.036
5. Valetov V. A., Medunetskiy B. B. Product surface quality providing on electro-erosion equipment. Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics, (2(78)), 113–116 (2012). (In Russ.) https://www.elibrary.ru/oynxzf
6. Ablyaz T. R. Analysis of details surface quality after electrical discharge machining. Modern problems of science and education, (2) (2014), available at: https://science-education.ru/ru/article/view?id=12593 (accessed: 2023.06.28). (In Russ.)
7. Grigoriev S. N., Kozochkin M. P., Porvatov A. N. et al. Electrical discharge machining of ceramic nanocomposites: sublimation phenomena and adaptive control. Heliyon, 5(10), e02629 (2019). https://doi.org/10.1016/J.HELIYON.2019.E02629
8. Grigoriev S. N., Teleshevskii V. I., Glubokov A. V. et al. The problems of metrological support for the preparation of production in machine construction. Measurement Techniques, 55(5), 526–529 (2012). https://doi.org/10.1007/s11018-012-9993-z
9. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N. Contemporary state and outlook for development of metrological assurance in the machine-building industry. Measurement Techniques, 55(11), 1311–1315 (2013). https://doi.org/10.1007/s11018-013-0126-0
10. Javid Ahmad Ganie, Renu Jain. Basic analogue of legendre polynomial and its difference equation. Asian Journal of Mathematics & Statistics, (12), 1–7 (2019). https://doi.org/10.3923/ajms.2019.1.7
11. Aktaş R., Area I., Pérez T. E. Three term relations for multivariate Uvarov orthogonal polynomials. Computational and Applied Mathematics, 41, 330 (2022). https://doi.org/10.1007/s40314-022-02030-x
12. Beñat Iñigo, Natalia Colinas-Armijo, Luis Norberto López de Lacalle, Gorka Aguirre. Digital twin-based analysis of volumetric error mapping procedures. Precision Engineering, 72, 823–836 (2021). https://doi.org/10.1016/j.precisioneng.2021.07.017
13. Yue L., Qinghua Z., Hailing S. A pointer type instrument intelligent reading system design based on convolutional neural networks. Frontiers in Physics, 8 (2020). https://doi.org/10.3389/fphy.2020.618917
14. Prikladnaya statistika: issledovanie zavisimostej. Reference edition, ed. S. A. Ayvazyan, Finansy i statistika, Moscow (1985). (In Russ.)
15. Barnard R. W., Dahlquist G., Pearce K. et al. Gram polynomials and the Kummer function. Journal of Approximation Theory, 94(1), 128–143 (1998). https://doi.org/10.1006/jath.1998.3181
16. Barinov I. N., Tikhonenkov V. A., Volkov V. S. et al. Inverse problem of approximation for a polynomial cubic transformation function for a sensor. Measurement Techniques, 59(2), 127–132 (2016). https://doi.org/10.1007/s11018-016-0929-x
Review
For citations:
Emelianov P.N., Zabelin A.V., Masterenko D.A., Teleshevskiy V.I. Reduction of the nonlinearity error of a computerized contact interferometer using digital scale image processing. Izmeritel`naya Tekhnika. 2024;73(8):4-12. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-8-4-12