Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

State primary special standard of impulse current unit in the range from 1.0 to 1.0·105 A GET 202-2024

https://doi.org/10.32446/0368-1025it.2024-9-4-11

Abstract

Metrological assurance of immunity tests to impulse currents of natural and artificial origin is an urgent task in the development and production of aviation, rocket and space equipment and telecommunication equipment. The State primary special standard of lightning discharge impulse current unit GET 202-2012 provided the unity of measurements of impulse current parameters in the amplitude range from 1 to 100 kA and the time range from hundreds of nanoseconds to units of milliseconds. In order to provide metrological support for measuring instruments for impulse currents of electrostatic discharges and switching currents (rise time of the transient response of at least 1 ns, measurement range from 1 to 200 A), GET 202-2012 underwent a modernization cycle in 2020–2023. As a result of the modernization, the State Primary Special Standard of the unit of pulse current in the range from 1.0 to 1.0·105 A GET 202-2024 was approved, the lower limit of the range of reproduction of the unit of pulse current of which was 1 A with a pulse front duration of no more than 1 ns. Thus, the problem of ensuring the uniformity of measurements of electrostatic discharges and power switching impulse currents parameters was solved. To achieve the specified characteristics, GET 202-2024 includes devices for reproducing current pulses based on semiconductor keys and reference current shunts with a short rise time. The composition, structural diagram, technical and metrological characteristics of GET 202-2024 are given. GET 202-2024 ensures the uniformity of measurements of the parameters of pulse currents of electrostatic discharges, partial lightning discharges, as well as pulse currents generated by switching processes when solving problems of electromagnetic compatibility, creating new types of materials and coatings, in geophysical and meteorological research and observations, in healthcare.

About the Authors

K. Yu. Sakharov
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Konstantin Yu. Sakharov, head of laboratory

Moscow



V. A. Turkin
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Vladimir A. Turkin, sub-head of laboratory

Moscow



O. V. Mikheev
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Oleg V. Mikheev, leading researcher

Moscow



A. V. Sukhov
All-Russian Research Institute for Optical and Physical Measurements
Russian Federation

Alexander V. Sukhov, senior researcher

Moscow



References

1. Kravchenko V. I. Grozozashchita radioelektronnykh sredstv: Spravochnik [Lightning protection of electronic devices: A reference book]. Radio i svyaz’ Publ., Moscow (1991). (In Russ.)

2. Balyuk N. V., Kechiev L. N., Stepanov P. V. Moshchnyi elektromagnitnyi impul’s: vozdeistvie na elektronnye sredstva i metody zashchity [Powerful electromagnetic pulse: impact on electronic means and methods of protection]. Gruppa IDT Publ., Moscow (2007). (In Russ.)

3. Kechiev L. N. Elektromagnitnaya nesovmestimost’: opasnosti, katastrofy, riski: inzhenernoe posobie [Electromagnetic incompatibility: hazards, catastrophes, risks: engineering manual]. Grifon Publ., Moscow (2022). (In Russ.)

4. Komyagin S. I. Elektromagnitnaya stoikost’ bespilotnykh letatel’nykh apparatov [Electromagnetic resistance of unmanned aerial vehicles: collection of scientific articles and reports]. Krasand Publ., Moscow (2015). (In Russ.)

5. Sakharov K. Yu., Turkin V. A., Mikheev O. V., Sukhov A. V., Ugolev V. L., Denisov M. Yu. Measuring instruments of transient electromagnetic fields and currents. Tekhnologii elektromagnitnoi sovmestimosti, (1(72)), 63–76 (2020). (In Russ.)

6. Sakharov K. Yu., Turkin V. A., Mikheev O. V., Sukhov A. V. National primary special standard for the unit of pulsed lightning discharge current in the 1–100 kA range. Measurement Techniques, 56(11), 1203–1208 (2014). https://doi.org/10.1007/s11018-014-0355-x

7. Sakharov K. Yu., Turkin V. A., Mikheev O. V., Ugolev V. L., Denisov M. Yu., Sukhov A. V. Metrological assurance of measurements of pulsed lightning-strike currents. Measurement Techniques, 58(11), 1266–1268 (2016). https://doi.org/10.1007/s11018-016-0882-8

8. Istrate D., Fortune D., Poree A., Blanc I. Traçabilité de mesure des impulsions de courant électrique jusqu’à 50 kA. Revue française de métrologie, (39), 15–28 (2015). (In French) https://doi.org/10.1051/rfm/2015011

9. Istrate D., Blanc I., Fortuné D. Development of a measurement setup for high impulse currents. IEEE Transactions on Instrumentation and Measurement, 6(62), 1473–1478 (2013). https://doi.org/10.1109/TIM.2013.2239018

10. Passon S., Havunen J., Meisner J., Kurrat M. Metrology for very fast current transients. 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 8641787, Athens, Greece (2018). https://doi.org/10.1109/ICHVE.2018.8641787

11. Rehman M. Z., Hallstrom J., Havunen J. Current step generation and measurement with nanosecond rise time using coaxial cable generator. 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 8642188, Athens, Greece (2018). https://doi.org/10.1109/ICHVE.2018.8642188


Supplementary files

Review

For citations:


Sakharov K.Yu., Turkin V.A., Mikheev O.V., Sukhov A.V. State primary special standard of impulse current unit in the range from 1.0 to 1.0·105 A GET 202-2024. Izmeritel`naya Tekhnika. 2024;(9):4-11. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-9-4-11

Views: 129


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)