

Error is a number, parameter or probability distribution
https://doi.org/10.32446/0368-1025it.2024-7-14-22
Abstract
The problem of the format (the form of representation by difference, scattering parameter, distribution) of the characteristics of the accuracy of the results in solving measurement problems in terms of the theory of errors and the concept of uncertainty is considered. It is shown that for the error as a difference, the key question is the uncertainty of the so-called true value. For measurement uncertainty, when switching to estimating the scattering parameter based on a set of repeated measurements and getting rid of the adjective true, a number of key issues of a different plan arise – the lack of logic of statistical inference, the inconsistency of the term “confidence level” with the term “confidence probability” in state verification schemes and the practical uselessness of measurement uncertainty characteristics in risk analysis tasks. However, the endless improvement of measurement methods and tools in the theory of errors and an unlimited amount of information for a complete description of the measured value in the concept of uncertainty is a common defect of both approaches, only in other words. Conceptually, the transition from error to uncertainty is an intermediate stage to the representation of accuracy characteristics by probability distributions. A brief overview of the transformation of the point of view of international metrology on this issue is given. The evaluation of the accuracy of the results is presented as a structural-parametric identification of the drift of metrological characteristics of measuring instruments and standards, as well as metrological certification of methods for solving measurement problems in the cross-observation scheme in terms of probability distributions. This allows you to get rid of the problems of incompleteness of other formats for representing accuracy characteristics. The most complete characterization of accuracy for the theory of errors and the concept of uncertainty is the format of the probability distribution. However, the endless improvement of measurement methods and tools in the theory of errors and an unlimited amount of information for a complete description of the measured value in the concept of uncertainty is a common defect of both approaches, only in other words. Conceptually, the transition from error to uncertainty is an intermediate stage to the representation of accuracy characteristics by probability distributions. A brief overview of the transformation of the point of view of international metrology on this issue is given. The evaluation of the accuracy of the results is presented as a structural-parametric identification of the drift of metrological characteristics of measuring instruments and standards, as well as metrological certification of methods for solving measurement problems in the cross-observation scheme in terms of probability distributions. This allows you to get rid of the problems of incompleteness of other formats for representing accuracy characteristics. The most complete characteristic of accuracy for the theory of errors and the concept of uncertainty is the format of the probability distribution.
About the Author
S. F. LevinRussian Federation
Sergey F. Levin
Moscow
References
1. Standartizaciya i primenenie statisticheskih metodov. Standarty i kachestvo, (12), 25 (1987). (In Russ.)
2. Rukovodstvo po vyrazheniyu neopredelyonnosti izmereniya. Translated from English VNIIM, ed. prof. V. A. Slaev. VNIIM, St. Petersburg (1999). (In Russ.)
3. Levin S. F. Metrologiya: ponyatiya i terminy, frazeologizmy i katahrezy. Test and measuring instruments and systems, (1), 35–38 (2017). (In Russ.)
4. Levin S. F. Metrologiya. Matematicheskaya statistika. Legendy i mify 20-go veka: Legenda o neopredelennosti. Partnery i konkurenty, (1), 13–25 (2001). (In Russ.)
5. Levin S. F. Definitional uncertainty and error of inadequacy. Measurement Techniques, 62(11), 933–944 (2020). https://doi.org/10.1007/s11018-020-01716-06
6. Levin S. F. Terms: information, uncertainty, details, identification, and inadequacy. Legislative and applied metrology, (1), 38–45 (2021). (In Russ.)
7. Levin S. F. Applied metrology: some of the issues of mathematical statistics. Legislative and applied metrology, (3), 17–27 (2021). (In Russ.)
8. Levin S. F. Mathematical theory of measurement problems: applications two sides of the same uncertainty. Тest & Measuring Instruments and Systems, (4), 27–38 (2021). (In Russ.)
9. Levin S. F. On uncertainty representation formats in solving measurement problems. Measurement Techniques, 65(4), 240–249 (2022). https://doi.org/10.1007/s11018-022-02075-8
10. Ivahnenko A. G. Metod gruppovogo ucheta argumentov – konkurent metoda stohasticheskoj apprksimacii. Аvtomatikа, (3), 58–72 (1968). (In Russ.)
11. Ivahnenko A. G., Kopa Yu. V., Todua N. N., Petrake G. Metod matematiche-skogo modelirovaniya slozhnyh ekologicheskih sistem. Аvtomatikа, (3), 20–34 (1971). (In Russ.)
12. Levin S. F. Neopredelennost’ rezul’tatov resheniya izmeritel’nyh zadach v shirokom i uzkom smyslah. Proc. International Seminar Mathematics, statistics and computation to support measurement quality, St. Petersburg, 28–30 June 2006, VNIIM, KOOMET, St. Petersburg, pp. 48, 50 (2006). (In Russ.)
13. Levin S. F. Neopredelennost’ rezul’tatov resheniya izmeritel’nyh zadach v shirokom i uzkom smysle. Metrologiya, (9), 3–24 (2006). (In Russ.)
14. Levin S. F. Indeterminateness of the results of calibrating measuring instruments in the narrow and the broad sense. Measurement Techniques, 50(9), 921–928 (2007). https://doi.org/10.1007/s11018-007-0173-5
15. International Vocabulary of Metrology – Basic and General Concepts and Associated Terms. VIM, 3rd ed. (2007).
16. Mezhdunarodnyj slovar’ po metrologii: osnovnye i obshchie ponyatiya i sootvetstvuyushchie terminy. Translated from English and French VNIIM, BelGIM. Ed. 2. NPO “Professional”, St. Petersburg (2010).
17. Ehrlich Ch., Dybkaer R., Wöger W. Evolution of philosophy and description of measurement (preliminary rationale for VIM3). OIML Bulletin, XLVIII (2), 23–35 (2007).
18. Bich W., Cox M. G., Harris P. M. Evolution of the “Guide to the Expression of the Uncertainty in Measurement”. Metrologia, 43(4), S161 (2006). https://doi.org/10.1088/0026-1394/43/4/S01
19. Rabinovich S. G. O neobhodimosti sozdaniya novyh rekomendacij po ocenivaniyu pogreshnostej i neopredelennostej izmerenij. Sistemy obrabotki informacii, 4(85), 23–26 (2010). (In Russ.)
20. Bich W., Cox M. G., Dybkaer R. et al. Revision of the “Guide to the expression of uncertainty in measurement”. Metrologia, 49(6), 702–705 (2012). https://doi.org/10.1088/0026-1394/49/6/702
21. Efremova N. Y., Chunovkina A. G. Development of the concept of uncertainty in measurement and revision of the Guide to the expression of uncertainty in measurement. Part 2. Comparative analysis of basic provisions of the guide and their planned changes. Measurement Techniques, 60(5), 418–424 (2017). https://doi.org/10.1007/s11018-017-1212-5
22. Erlih Ch., Dibker R., Vyoger V. Evolyuciya filosofii i traktovki ponyatiya “izmerenie”. Glavnyj metrolog, (1), 11–30 (2016). (In Russ.)
23. Levin S. F. Rukovodstvo po vyrazheniyu neopredelennosti izmereniya: reviziya – smena paradigmy ili novaya sankciya? Zakonodatel’naya i prikladnaya metrologiya, (5), 31–44 (2016). (In Russ.)
24. Osnovnye terminy v oblasti metrologii: Slovar’-spravochnik, ed. Yu. V. Tarbeev, Izdatelstvo standartov, Moscow (1989). (In Russ.)
25. Kolmogorov A. N. On tables of random numbers. Theoretical Computer Science, 207, 387–395 (1998) (Reprinted from Sankhyã: The Indian Journal of Statistics. Series A, 25(4) (1963). https://doi.org/10.1016/S0304-3975%2898%2900075-9
26. Kolmogorov A. N. Realnyy smysl rezultatov analiza. Trudy II Vsesoyuznogo soveshchaniya po matematicheskoy statistike. Tashkent, рp. 240–268 (1949). (In Russ.)
Review
For citations:
Levin S.F. Error is a number, parameter or probability distribution. Izmeritel`naya Tekhnika. 2024;(7):14-22. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-7-14-22