

Electromechanical mathematical model of curvilinear torsional-bending piezoelectric actuator
https://doi.org/10.32446/0368-1025it.2024-10-41-48
Abstract
A brief overview of various piezoelectric actuators - electromechanical converters of electrical signals of the power source into movement is given. An electromechanical mathematical model of a piezoelectric torsional-bending TorsBC-actuator in the form of a curved two-layer bimorph of torsion from two fi lm piezoelectric IncIDE-actuators with orientation angles ±π/4 interdigital electrodes was developed. The working bending of the TorsBC actuator in the transverse plane is due to controlled piezoelectric twisting around its longitudinal curvilinear axis. The torque is due to piezoelectric tensile or compressive stresses at ±π/4 angles to the longitudinal axis in the bimorph layers. The polarity of the control voltage applied to the electrode outputs determines the sign of the piezoelectric stresses (i.e. tension or compression in directions ±π/4) of the torsion bimorph layers and, as a result, determines the direction of twisting and the resulting transverse bending of the TorsBC actuator. Analytical solutions and numerical analysis of values of deflection, twist angle and blocking force on free end of cantilever arc-shaped TorsBC actuator are obtained depending on its geometrical and electro-mechanical parameters, in particular, curvature of its longitudinal axis. The results are relevant in the design of bending-type sensors and actuators, elements of microelectromechanical systems, stepper motors and manipulators for assembling microscale objects.
Keywords
About the Author
A. A. Pan’kovRussian Federation
Аndrey A. Pan’kov
Perm
References
1. Zhu D., Almusallam A., Beeby S.P. et al. A bimorph multi-layer piezoelectric vibration energy harvester. PowerMEMS 2010 Proceedings, Belgium, Leuven, 01–03 Dec 2010. https://www.researchgate.net/publication/313363724_A_Bimorph_Multi-layer_Piezoelectric_Vibration_Energy_Harvester
2. Williams C. B., Yates R. B. Analysis of a microelectric generator for Microsystems. Sensors and Actuators A: Physical, 52(1–3), 8–11 (1996). http://dx.doi.org/10.1016/0924-4247(96)80118-X
3. Liu H., Zhong J., Lee C. et al. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4), 041306 (2018). https://doi.org/10.1063/1.5074184
4. Ivan I. A., Rakotondrabe M., Lutz P., Chaillet N. Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. Review of Scientific Instruments. American Institute of Physics, 80(6), 065102 (2009). https://doi.org/10.1063/1.3142486
5. Bansevičius R., Navickaitė S., Jūrėnas V. et al. Investigation of novel design piezoelectric bending actuators. Journal of Vibroengineering, 15(2), 1064–1068 (2013).
6. Jelstaun Korporejshn N.V. (AN). Deformable mirror based on multilayer active bimorph structure: Pa tent RU 2099754 C1. Bull. Izobret., no. 12 (1997).
7. Mouhli M. Analysis and shape modeling of thin piezoelectric actuators, Virginia Commonwealth University Publ. (2005).
8. Yamada H., Sasaki M., Nam Y. Active vibration control of a micro-actuator for hard disk drives using self-sensing actuator. Journal of Intelligent Material Systems and Structures, 19(1), 113–123 (2008). https://doi.org/10.1177/1045389X07083693
9. El-Sayed A. M., Abo-Ismail A., El-Melegy M. T. et al. Development of a micro-gripper using piezoelectric bimorphs. Sensors, 13, 5826–5840 (2013). https://doi.org/10.3390/s130505826
10. Zhou J., Dong L., Yang W. A Double-Acting Piezoelectric actuator for helicopter active rotor. Actuators, 247(10), 1–15 (2021), https://doi.org/10.3390/act10100247
11. Abedian B., Cundari M. Resonant frequency of a polyvinylidene flouride piezoelectric bimorph: the effect of surrounding fluid. Proceedings SPIE, 1916 (1993). https://doi.org/10.1117/12.148486
12. Pan’kov A. A., Anoshkin A. N., Pisarev P. V. Propeller blade with controlled profile geometry: Patent RU 2099754 C1. Inventions. Utility models, no. 17 (2020).
13. Kozyrev G. I., Nazarov A. V., Soldatenko V. S., Usikov V. D. Design of smart sensors based on the introduction of minimal structural redundancy. Measurement Techniques, 63(11), 870–876 (2021). https://doi.org/10.1007/s11018-021-01871-y
14. Polyakov A. V., Ksenofontov M. A. High-voltage monitoring with a fiber-optic recirculation measuring system. Measurement Techniques, 63(2), 117–127 (2020). https://doi.org/10.1007/s11018-020-01759-3
15. Wilk ie W. K. et al. Piezoelectric macro-fiber composite actuator and method for making same. USA patent 2003/0056351 A1, March 2003.
16. Emad D., Fanni M. A., Mohamed A. M., Yoshida S. Low-computational-cost technique for modeling macro fiber composite piezoelectric actuators using fi nite element method. Materials, 15(14), 4316 (2021). https://doi.org/10.3390/ma14154316
17. Park J.-S., Kim J.-H. Analytical development of single crystal macro fiber composite actuators for active twist rotor blades. Smart Materials and Structures, 14, 745–753 (2005). https://doi:10.1088/0964-1726/14/4/033
18. Pan’kov A. A. Piezoelectric MDS actuator: Patent RU 2803015. Inventions. Utility models, no. 25 (2023).
19. Pan’kov A. A. Piezoelectric CDS actuator: Patent RU 2801619. Inventions. Utility models, no. 23 (2023).
20. Pan’ kov A. A. Manufacturing method of piezoelectric actuator: Patent RU 2811420. Inventions. Utility models, no. 2 (2024).
21. Pan’kov A. A. Bending-type piezoactuator: Patent RU 2819557. Inventions. Utility models, no. 15 (2024).
22. Pan’kov A. A. TorsBC-bending type piezoactuator: Patent RU 2822976. Inventions. Utility models, no. 20 (2024).
23. Pisarenko G. S., Yakovlev A. P., Matveev V. V. Handbook at Strength of Materials. Kiev, Naukova dumka (1988). (In Russ.)
Supplementary files
Review
For citations:
Pan’kov A.A. Electromechanical mathematical model of curvilinear torsional-bending piezoelectric actuator. Izmeritel`naya Tekhnika. 2024;(10):41-48. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-10-41-48