

Waveguide adapter with contactless flange for operation in the millimeter wavelength range
https://doi.org/10.32446/0368-1025it.2024-8-48-55
Abstract
Methods of increasing accuracy of measurement results of S-parameters of waveguide devices operating in the upper part of extremely high frequency range are reviewed. It is shown that accuracy and reliability of measurements of S-parameters of waveguide devices depend on the quality of contact between waveguide flanges: leakage of electromagnetic radiation through gaps poses a significant problem and can lead to unreliable results in measuring insertion loss and voltage standing wave ratio. Therefore, particular attention is paid to quality of contact between the measurement system and the device under test when operating in the millimeter wavelength range. In this paper, a contactless waveguide adapter flange for millimeter wavelength range insensitive to any air gap when connected to the device under test is designed. The waveguide adapter with contactless flange constitutes a section of a standard WR10 rectangular waveguide terminated on one side by a standard UG-387 flange and on the other side by the proposed contactless flange with a pin-like structure. Use of an adapter with a contactless flange allows for minimizing issues related to measuring insertion loss and return loss caused by incomplete contact or lack of it when connecting two waveguide flanges. This type of flange connection can be used for rapid measurements because no flange screw fastening is required. A comparative analysis of a standard adapter and an adapter with a contactless flange is performed in a WR10 waveguide channel. Efficiency of contactless coupling is experimentally confirmed within the entire operating range of 75 to 110 GHz with a 100 μm gap at the edge of the waveguide coupling. Use of a waveguide adapter with a contactless flange allows for faster and at the same time more accurate measurement of S-parameters of the devices under test. This adapter is indispensable for quick certification of millimeter-wave waveguide devices by modern metrological tools (vector network analyzer and scalar network analyzer).
About the Authors
S. Yu. MolchanovRussian Federation
Chernogolovka, Moscow region
A. A. Titenko
Russian Federation
Chernogolovka, Moscow region
I. Sh. Bahteev
Russian Federation
Chernogolovka, Moscow region
I. V. Kukushkin
Russian Federation
Chernogolovka, Moscow region
V. M. Muravev
Russian Federation
Chernogolovka, Moscow region
References
1. Sharov G.A. Volnovodnie ustroystva santimetrovih I millimetrovih voln [Waveguide devices of centimeter and millimeter waves].
2. Moscow, Goryachaya liniya - Telecom. 2016. 640 p. (In Russ)
3. Kerr A. R., Wollack E., Horner N. Waveguide flanges for ALMA instrumentation //ALMA Memo. 1999. pp. 278. http://web.rfoe.net:8000/SENSORS/wy/mb.tem/gpw/gongnengfl/memo278.pdf
4. Oleson C., Denning A. Millimeter wave vector analysis calibration and measurement problems caused by common waveguide irregularities //56th ARFTG Conference Digest. IEEE, 2000. vol. 38. pp. 1-9. https://doi.org/10.1109/ARFTG.2000.327428
5. Semenov V.A., Bondarenko A.S., Malay I.M. About standardization of connection sizes of connection elements of assembly of microwave devices of electronic measuring instruments // Almanac of Modern Metrology. 2019. no. 3(19). pp. 31-44. (In Russ). https://asm.vniiftri.ru/wp-content/uploads/2022/05/Альманах-современной-метрологии-№-3-2019-стр-31–44.pdf
6. Horibe M., Noda K. Modification of waveguide flange design for millimeter and submillimeter-wave measurements //77th ARFTG Microwave Measurement Conference. IEEE, 2011. pp. 1-7. https://doi.org/10.1109/ARFTG77.2011.6034557
7. Horibe M., Kishikawa R. Performance of new design of waveguide flange for measurements at frequencies from 800 GHz to 1.05 THz //79th ARFTG Microwave Measurement Conference. IEEE, 2012. pp. 1-6. https://doi.org/10.1109/ARFTG79.2012.6291186
8. Lau Y. S., Vondran D. J. An innovative waveguide interface and quarter-wavelength shim for the 220∓ 325 GHz band //80th ARFTG Microwave Measurement Conference. IEEE, 2012. pp. 1-4. https://doi.org/10.1109/ARFTG.2012.6422431
9. Lau Y. S., Denning A. An innovative waveguide interface for millimeter wave and sub-millimeter wave applications //2007 69th ARFTG Conference. IEEE, 2007. pp. 1-8. https://doi.org/10.1109/ARFTG.2007.5456318
10. Li H., Kerr A. R., Hesler J. L. et al. An improved ring-centered waveguide flange for millimeter-and submillimeter-wave applications //2010 76th ARFTG Microwave Measurement Conference. IEEE, 2010. pp. 1-4. https://doi.org/10.1109/ARFTG76.2010.5700056
11. Li H., Kerr A. R., Hesler J. L. & Weikle R. M. Repeatability of waveguide flanges with worst-case tolerances in the 500–750 GHz band //79th ARFTG Microwave Measurement Conference. IEEE, 2012. pp. 1-8. https://doi.org/10.1109/ARFTG79.2012.6291185
12. Li H., Arsenovic A., Hesler J. L., Kerr A. R. & Weikle R. M. Repeatability and mismatch of waveguide flanges in the 500–750 GHz band //IEEE Transactions on Terahertz Science and Technology. 2013. vol. 4. no. 1. pp. 39-48. https://doi.org/10.1109/TTHZ.2013.2283540
13. Kerr A. R., Srikanth S. The ring-centered waveguide flange for submillimeter wavelengths //Proc. 20th Int. Symp. on Space THz Tech. 2009. pp. 220-222. https://www.nrao.edu/meetings/isstt/papers/2009/2009220222.pdf
14. Kildal P. S., Alfonso E., Valero-Nogueira A. & Rajo-Iglesias E. Local metamaterial-based waveguides in gaps between parallel metal plates //IEEE Antennas and wireless propagation letters. 2008. vol. 8. pp. 84-87. https://doi.org/10.1109/LAWP.2008.2011147
15. Rahiminejad S., Pucci E., Vassilev V. et al. Polymer gap adapter for contactless, robust, and fast measurements at 220–325 GHz //Journal of Microelectromechanical Systems. 2015. vol. 25. no. 1. pp. 160-169. https://doi.org/10.1109/JMEMS.2015.2500277
16. Ebrahimpouri M., Brazalez A. A., Manholm L. & Quevedo-Teruel O. Using glide-symmetric holes to reduce leakage between waveguide flanges //IEEE Microwave and wireless components letters. 2018. vol. 28. no. 6. pp. 473-475. https://doi.org/10.1109/LMWC.2018.2824563
17. Sun D., Chen X., Guo L. Compact corrugated plate for double-sided contactless waveguide flange //IEEE Microwave and Wireless Components Letters. 2020. vol. 31. no. 2. pp. 129-132. 10.1109/LMWC.2020.3042279
18. Ren L., Doshi D., Shu Y. Contactless Flanges and Rail System for mm Wand THz Testing //2022 52nd European Microwave Conference (EuMC). IEEE, 2022. pp. 13-15. https://doi.org/10.23919/EuMC54642.2022.9924266
19. Pucci E., Kildal P. S. Contactless non-leaking waveguide flange realized by bed of nails for millimeter wave applications //2012 6th European Conference on antennas and propagation (EUCAP). IEEE, 2012. pp. 3533-3536. https://doi.org/10.1109/EuCAP.2012.6206199
20. Mayaka C., Shu Y., Doshi D. Robust contactless waveguide flange for fast measurements //2021 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 2021. pp. 559-561. https://doi.org/10.1109/IMS19712.2021.9575029
21. Yong W. Y., Vosoogh A., Bagheri A. et al. An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and sub-THz Applications //IEEE Access. 2023. https://doi.org/10.1109/ACCESS.2023.3293739
Supplementary files
Review
For citations:
Molchanov S.Yu., Titenko A.A., Bahteev I.Sh., Kukushkin I.V., Muravev V.M. Waveguide adapter with contactless flange for operation in the millimeter wavelength range. Izmeritel`naya Tekhnika. 2024;73(8):48-55. (In Russ.) https://doi.org/10.32446/0368-1025it.2024-8-48-55